--- library_name: transformers license: mit base_model: m3rg-iitd/matscibert tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: VF_MatSciBERT_ST_1800 results: [] --- # VF_MatSciBERT_ST_1800 This model is a fine-tuned version of [m3rg-iitd/matscibert](https://huggingface.co/m3rg-iitd/matscibert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1894 - Precision: 0.7360 - Recall: 0.7770 - F1: 0.7560 - Accuracy: 0.9556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 30 | 0.3205 | 0.4448 | 0.2093 | 0.2847 | 0.9095 | | No log | 2.0 | 60 | 0.2400 | 0.6346 | 0.6075 | 0.6208 | 0.9376 | | No log | 3.0 | 90 | 0.2236 | 0.6764 | 0.7010 | 0.6885 | 0.9450 | | No log | 4.0 | 120 | 0.1959 | 0.6664 | 0.7127 | 0.6888 | 0.9453 | | No log | 5.0 | 150 | 0.1958 | 0.7177 | 0.7514 | 0.7342 | 0.9519 | | No log | 6.0 | 180 | 0.1802 | 0.7180 | 0.7666 | 0.7415 | 0.9541 | | No log | 7.0 | 210 | 0.1911 | 0.7316 | 0.7668 | 0.7488 | 0.9546 | | No log | 8.0 | 240 | 0.1914 | 0.7384 | 0.7711 | 0.7544 | 0.9554 | | No log | 9.0 | 270 | 0.1873 | 0.7366 | 0.7745 | 0.7551 | 0.9556 | | No log | 10.0 | 300 | 0.1894 | 0.7360 | 0.7770 | 0.7560 | 0.9556 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1