File size: 1,757 Bytes
5f1a59a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
library_name: transformers
license: mit
base_model: emirhanbilgic/speecht5_finetuned_emirhan_tr
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_emirhan_tr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_emirhan_tr

This model is a fine-tuned version of [emirhanbilgic/speecht5_finetuned_emirhan_tr](https://huggingface.co/emirhanbilgic/speecht5_finetuned_emirhan_tr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2938

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.3491        | 0.4545 | 100  | 0.3301          |
| 0.345         | 0.9091 | 200  | 0.3119          |
| 0.3304        | 1.3636 | 300  | 0.3075          |
| 0.3215        | 1.8182 | 400  | 0.3012          |
| 0.3139        | 2.2727 | 500  | 0.2938          |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1