--- language: en datasets: - wikisql widget: - text: "question: get people name with age equal 25 table: id, name, age" --- # How to use ```python from typing import List from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("juierror/text-to-sql-with-table-schema") model = AutoModelForSeq2SeqLM.from_pretrained("juierror/text-to-sql-with-table-schema") def prepare_input(question: str, table: List[str]): table_prefix = "table:" question_prefix = "question:" join_table = ",".join(table) inputs = f"{question_prefix} {question} {table_prefix} {join_table}" input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids return input_ids def inference(question: str, table: List[str]) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result print(inference(question="get xml id from json cdr table", json_cdr=["id", "extensions", "age"])) ``` There are newer version of this using Flan-T5 as a based model. You can check out [here](https://huggingface.co/juierror/flan-t5-text2sql-with-schema) PS. From this [discussion](https://huggingface.co/juierror/flan-t5-text2sql-with-schema/discussions/5), I think the base model that I use for finetune did not support the token `<`, so this might not be a good model to do this tasks.