Julien Simon commited on
Commit
0bfaffa
1 Parent(s): eca0b9b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - fleurs
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: xlm-v-base-language-id
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: fleurs
17
+ type: fleurs
18
+ config: all
19
+ split: validation
20
+ args: all
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9930337861372344
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # xlm-v-base-language-id
31
+
32
+ This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the fleurs dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0241
35
+ - Accuracy: 0.9930
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 3e-05
55
+ - train_batch_size: 128
56
+ - eval_batch_size: 128
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 512
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.6368 | 1.0 | 531 | 0.4593 | 0.9689 |
71
+ | 0.059 | 2.0 | 1062 | 0.0412 | 0.9899 |
72
+ | 0.0311 | 3.0 | 1593 | 0.0275 | 0.9918 |
73
+ | 0.0255 | 4.0 | 2124 | 0.0243 | 0.9928 |
74
+ | 0.017 | 5.0 | 2655 | 0.0241 | 0.9930 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.26.0
80
+ - Pytorch 1.13.1
81
+ - Datasets 2.8.0
82
+ - Tokenizers 0.13.2