File size: 2,561 Bytes
fe3e073
 
3b7dffb
 
fe3e073
3b7dffb
fe3e073
 
 
3b7dffb
fe3e073
 
 
 
 
 
3b7dffb
fe3e073
3b7dffb
fe3e073
33fb8b7
 
fe3e073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33fb8b7
fe3e073
 
 
 
 
 
 
 
 
 
 
 
33fb8b7
 
 
 
 
 
 
 
 
 
fe3e073
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---

library_name: transformers
language:
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
model-index:
- name: Whisper-Small-squeezeformer-architecture
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper-Small-squeezeformer-architecture

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Voice_Data_Collection_second_edition dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4281
- Cer: 24.9352

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 16

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 3750
- training_steps: 60000

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step  | Cer      | Validation Loss |

|:-------------:|:-----:|:-----:|:--------:|:---------------:|

| 3.0206        | 1.0   | 3750  | 101.4703 | 2.9448          |

| 2.6624        | 2.0   | 7500  | 99.0366  | 2.7587          |

| 1.4476        | 3.0   | 11250 | 80.5695  | 1.4832          |

| 0.7219        | 4.0   | 15000 | 49.1456  | 0.8063          |

| 0.5387        | 5.0   | 18750 | 41.2985  | 0.6620          |

| 0.3824        | 6.0   | 22500 | 39.1312  | 0.6240          |

| 0.3445        | 7.0   | 26250 | 37.5137  | 0.5984          |

| 0.2819        | 8.0   | 30000 | 36.6006  | 0.5823          |

| 0.538         | 9.0   | 33750 | 0.5156   | 30.9133         |

| 0.3792        | 10.0  | 37500 | 0.4562   | 27.3205         |

| 0.2974        | 11.0  | 41250 | 0.4408   | 26.4521         |

| 0.2281        | 12.0  | 45000 | 0.4225   | 25.7254         |

| 0.1644        | 13.0  | 48750 | 0.4207   | 25.1123         |

| 0.1208        | 14.0  | 52500 | 0.4241   | 25.0098         |

| 0.0877        | 15.0  | 56250 | 0.4232   | 24.9781         |

| 0.0652        | 16.0  | 60000 | 0.4281   | 24.9352         |





### Framework versions



- Transformers 4.44.2

- Pytorch 2.4.0

- Datasets 2.21.0

- Tokenizers 0.19.1