File size: 1,897 Bytes
4709f98
 
 
 
 
 
f027f2f
4709f98
 
 
 
51fa942
 
 
c1606e0
51fa942
 
f027f2f
 
 
 
c1606e0
51fa942
f027f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6288a
f027f2f
1f6288a
4709f98
 
51fa942
4709f98
51fa942
4709f98
 
 
 
 
 
efc7e07
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
language: zh
tags:
- wobert
inference: false
---
## 介绍
### tf版本 
https://github.com/ZhuiyiTechnology/WoBERT
### pytorch版本 
https://github.com/JunnYu/WoBERT_pytorch

## 安装(主要为了安装WoBertTokenizer)
```bash
pip install git+https://github.com/JunnYu/WoBERT_pytorch.git
```

## 使用
```python
import torch
from transformers import BertForMaskedLM as WoBertForMaskedLM
from wobert import WoBertTokenizer

pretrained_model_or_path_list = [
    "junnyu/wobert_chinese_plus_base", "junnyu/wobert_chinese_base"
]
for path in pretrained_model_or_path_list:
    text = "今天[MASK]很好,我[MASK]去公园玩。"
    tokenizer = WoBertTokenizer.from_pretrained(path)
    model = WoBertForMaskedLM.from_pretrained(path)
    inputs = tokenizer(text, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs).logits[0]
    outputs_sentence = ""
    for i, id in enumerate(tokenizer.encode(text)):
        if id == tokenizer.mask_token_id:
            tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1])
            outputs_sentence += "[" + "||".join(tokens) + "]"
        else:
            outputs_sentence += "".join(
                tokenizer.convert_ids_to_tokens([id],
                                                skip_special_tokens=True))
    print(outputs_sentence)
# RoFormer    今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。
# PLUS WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||打算||准备||就]去公园玩。
# WoBERT      今天[天气||阳光||天||心情||空气]很好,我[想||要||就||准备||也]去公园玩。
```
## 引用

Bibtex:

```tex
@techreport{zhuiyiwobert,
  title={WoBERT: Word-based Chinese BERT model - ZhuiyiAI},
  author={Jianlin Su},
  year={2020},
  url="https://github.com/ZhuiyiTechnology/WoBERT",
}
```