File size: 24,155 Bytes
a8a63dd
3a2ea0a
a8a63dd
8747d5d
a8a63dd
3a2ea0a
a8a63dd
 
 
 
 
 
 
 
 
8747d5d
 
 
3a2ea0a
a8a63dd
3a2ea0a
a8a63dd
 
3a2ea0a
a8a63dd
3a2ea0a
a8a63dd
 
 
 
8747d5d
a8a63dd
 
 
3a2ea0a
 
 
a8a63dd
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
3a2ea0a
 
a8a63dd
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
8747d5d
a8a63dd
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
8747d5d
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
8747d5d
 
 
 
a8a63dd
 
 
8747d5d
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
8747d5d
 
 
 
 
 
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
 
8747d5d
 
 
a8a63dd
 
 
 
8747d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
8747d5d
 
 
 
a8a63dd
 
8747d5d
 
 
a8a63dd
 
 
 
 
 
 
3a2ea0a
 
 
53fc90d
 
 
3a2ea0a
 
 
53fc90d
 
3a2ea0a
53fc90d
3a2ea0a
 
 
 
53fc90d
 
 
 
3a2ea0a
 
 
 
 
 
 
 
a8a63dd
 
 
53fc90d
3a2ea0a
a8a63dd
 
 
 
53fc90d
a8a63dd
 
 
3a2ea0a
a8a63dd
 
3a2ea0a
8747d5d
a8a63dd
 
 
 
 
 
 
 
 
 
 
 
 
 
53fc90d
3a2ea0a
 
 
 
 
 
 
a8a63dd
 
 
 
 
8747d5d
a8a63dd
 
 
3a2ea0a
a8a63dd
3a2ea0a
a8a63dd
 
 
 
 
 
 
 
8747d5d
53fc90d
 
 
 
 
a8a63dd
3a2ea0a
a8a63dd
 
 
 
 
 
 
 
 
53fc90d
3a2ea0a
 
 
 
 
 
 
 
 
 
 
 
 
a8a63dd
3a2ea0a
a8a63dd
 
 
 
8747d5d
 
 
a8a63dd
 
8747d5d
 
 
a8a63dd
 
8747d5d
 
 
a8a63dd
 
8747d5d
a8a63dd
 
 
 
 
 
 
3a2ea0a
a8a63dd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import torch
import torch.nn.functional as F
import inspect
import numpy as np
from typing import Callable, List, Optional, Union
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
from diffusers import AutoencoderKL, DiffusionPipeline
from diffusers.utils import (
    deprecate,
    is_accelerate_available,
    is_accelerate_version,
    logging,
)
from diffusers.configuration_utils import FrozenDict
from diffusers.schedulers import DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor

from .models import MultiViewUNetModel
from .util import get_camera

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class MVDreamPipeline(DiffusionPipeline):

    _optional_components = ["feature_extractor", "image_encoder"]

    def __init__(
        self,
        vae: AutoencoderKL,
        unet: MultiViewUNetModel,
        tokenizer: CLIPTokenizer,
        text_encoder: CLIPTextModel,
        scheduler: DDIMScheduler,
        # imagedream variant
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModel,
        requires_safety_checker: bool = False,
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:  # type: ignore
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "  # type: ignore
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate(
                "steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
            )
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:  # type: ignore
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate(
                "clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
            )
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            unet=unet,
            scheduler=scheduler,
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding.

        When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
        steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding.

        When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
        several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_sequential_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        Note that offloading happens on a submodule basis. Memory savings are higher than with
        `enable_model_cpu_offload`, but performance is lower.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError(
                "`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
            )

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
            cpu_offload(cpu_offloaded_model, device)

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError(
                "`enable_model_offload` requires `accelerate v0.17.0` or higher."
            )

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        hook = None
        for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
            _, hook = cpu_offload_with_hook(
                cpu_offloaded_model, device, prev_module_hook=hook
            )

        # We'll offload the last model manually.
        self.final_offload_hook = hook

    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance: bool,
        negative_prompt=None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
                Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            raise ValueError(
                f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
            )

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(
            prompt, padding="longest", return_tensors="pt"
        ).input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
            text_input_ids, untruncated_ids
        ):
            removed_text = self.tokenizer.batch_decode(
                untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
            )
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if (
            hasattr(self.text_encoder.config, "use_attention_mask")
            and self.text_encoder.config.use_attention_mask
        ):
            attention_mask = text_inputs.attention_mask.to(device)
        else:
            attention_mask = None

        prompt_embeds = self.text_encoder(
            text_input_ids.to(device),
            attention_mask=attention_mask,
        )
        prompt_embeds = prompt_embeds[0]

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(
            bs_embed * num_images_per_prompt, seq_len, -1
        )

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if (
                hasattr(self.text_encoder.config, "use_attention_mask")
                and self.text_encoder.config.use_attention_mask
            ):
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(
                dtype=self.text_encoder.dtype, device=device
            )

            negative_prompt_embeds = negative_prompt_embeds.repeat(
                1, num_images_per_prompt, 1
            )
            negative_prompt_embeds = negative_prompt_embeds.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(
                shape, generator=generator, device=device, dtype=dtype
            )
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def encode_image(self, image, device, num_images_per_prompt):
        dtype = next(self.image_encoder.parameters()).dtype

        if image.dtype == np.float32:
            image = (image * 255).astype(np.uint8)
            
        image = self.feature_extractor(image, return_tensors="pt").pixel_values
        image = image.to(device=device, dtype=dtype)
        
        image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)

        return torch.zeros_like(image_embeds), image_embeds

    def encode_image_latents(self, image, device, num_images_per_prompt):
        
        dtype = next(self.image_encoder.parameters()).dtype

        image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W]
        image = 2 * image - 1
        image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
        image = image.to(dtype=dtype)

        posterior = self.vae.encode(image).latent_dist
        latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
        latents = latents.repeat_interleave(num_images_per_prompt, dim=0)

        return torch.zeros_like(latents), latents

    @torch.no_grad()
    def __call__(
        self,
        prompt: str = "",
        image: Optional[np.ndarray] = None,
        height: int = 256,
        width: int = 256,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.0,
        negative_prompt: str = "",
        num_images_per_prompt: int = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        output_type: Optional[str] = "numpy", # pil, numpy, latents
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        num_frames: int = 4,
        device=torch.device("cuda:0"),
    ):
        self.unet = self.unet.to(device=device)
        self.vae = self.vae.to(device=device)
        self.text_encoder = self.text_encoder.to(device=device)

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # imagedream variant
        if image is not None:
            assert isinstance(image, np.ndarray) and image.dtype == np.float32
            self.image_encoder = self.image_encoder.to(device=device)
            image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
            image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
            
        _prompt_embeds = self._encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
        )  # type: ignore
        prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)

        # Prepare latent variables
        actual_num_frames = num_frames if image is None else num_frames + 1
        latents: torch.Tensor = self.prepare_latents(
            actual_num_frames * num_images_per_prompt,
            4,
            height,
            width,
            prompt_embeds_pos.dtype,
            device,
            generator,
            None,
        )

        if image is not None:
            camera = get_camera(num_frames, elevation=5, extra_view=True).to(dtype=latents.dtype, device=device)
        else:
            camera = get_camera(num_frames, elevation=15, extra_view=False).to(dtype=latents.dtype, device=device)
        camera = camera.repeat_interleave(num_images_per_prompt, dim=0)

        # Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                multiplier = 2 if do_classifier_free_guidance else 1
                latent_model_input = torch.cat([latents] * multiplier)
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                unet_inputs = {
                    'x': latent_model_input,
                    'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
                    'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
                    'num_frames': actual_num_frames,
                    'camera': torch.cat([camera] * multiplier),
                }

                if image is not None:
                    unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
                    unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat
                
                # predict the noise residual
                noise_pred = self.unet.forward(**unet_inputs)

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents: torch.Tensor = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs, return_dict=False
                )[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)  # type: ignore

        # Post-processing
        if output_type == "latent":
            image = latents
        elif output_type == "pil":
            image = self.decode_latents(latents)
            image = self.numpy_to_pil(image)
        else: # numpy
            image = self.decode_latents(latents)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        return image