justinsiow commited on
Commit
4a3c7ca
1 Parent(s): 5853cd0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - food101
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit_101
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: food101
17
+ type: food101
18
+ config: default
19
+ split: train[:5000]
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.88
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # vit_101
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.6267
35
+ - Accuracy: 0.88
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 3
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.7266 | 0.99 | 62 | 2.5317 | 0.814 |
70
+ | 1.8315 | 2.0 | 125 | 1.7931 | 0.864 |
71
+ | 1.5845 | 2.98 | 186 | 1.6267 | 0.88 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.27.2
77
+ - Pytorch 2.1.0.dev20230428
78
+ - Datasets 2.10.1
79
+ - Tokenizers 0.13.2