File size: 2,058 Bytes
c506567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
tags:
- generated_from_trainer
model-index:
- name: vicuna-adv-robust-ul15-sft-full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vicuna-adv-robust-ul15-sft-full

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6864

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0543        | 0.61  | 15   | 1.0329          |
| 0.9704        | 1.61  | 30   | 1.0141          |
| 0.9103        | 2.61  | 45   | 1.0125          |
| 0.8485        | 3.61  | 60   | 1.0221          |
| 0.785         | 4.61  | 75   | 1.0448          |
| 0.7207        | 5.61  | 90   | 1.0821          |
| 0.6444        | 6.61  | 105  | 1.1344          |
| 0.5673        | 7.61  | 120  | 1.1993          |
| 0.4883        | 8.61  | 135  | 1.2800          |
| 0.4137        | 9.61  | 150  | 1.3778          |
| 0.345         | 10.61 | 165  | 1.4092          |
| 0.3022        | 11.61 | 180  | 1.5371          |
| 0.2649        | 12.61 | 195  | 1.5054          |
| 0.2272        | 13.61 | 210  | 1.5542          |
| 0.1929        | 14.61 | 225  | 1.6869          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.14.6
- Tokenizers 0.14.1