justwonder
commited on
Commit
•
3439cbb
1
Parent(s):
e6250e6
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 282.82 +/- 18.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b73c11bea70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b73c11beb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b73c11beb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b73c11bec20>", "_build": "<function ActorCriticPolicy._build at 0x7b73c11becb0>", "forward": "<function ActorCriticPolicy.forward at 0x7b73c11bed40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b73c11bedd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b73c11bee60>", "_predict": "<function ActorCriticPolicy._predict at 0x7b73c11beef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b73c11bef80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b73c11bf010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b73c11bf0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b73c1369100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718885145184049666, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAED8zj1Ic626pWcFOOuXAzP3lWS6VMMYtwAAgD8AAIA/zcy8NvRslT4CHos8vCOXvkm9Cb29r6Y8AAAAAAAAAACa10A8XulNPy36BLoy+wa/NWyjvAkevbsAAAAAAAAAAOb1hz0HixI/Bjr/O+PF4b6lHCw9om6/PAAAAAAAAAAAgIckvii5irzlIgG+fg2dvHde8T3l/Xs9AACAPwAAgD9m/DM891kBPp4uRL2PQ1i+qh4bvaZpxToAAAAAAAAAAHDT9T6ucQS+3GoIPUnQn7o+eU89Yqk3PQAAgD8AAIA/M2l5va5Zgbo4jWa2HsxXsalCYTpt7YY1AACAPwAAgD/NtGS7RJ+oPUKjMj5tgQ2+OXILPQC5NT0AAAAAAAAAANARsz4ArBY/HvQ0vs31sr4cJzg+vlAJvgAAAAAAAAAApusMvvXQED8Kghe7GsEKv/VYQb5+TFk8AAAAAAAAAADek4K+R/kNPzHNhb1j4QW/fuWZvj0c3z0AAAAAAAAAABIvjr6oSpc/jZ/2vpb0R79KPqK+MWU5vgAAAAAAAAAAwCeBvX9KLD9Lxy89goYNvxV1XL2G1Zk9AAAAAAAAAADNU5W92WgYP5rbzT1g8PO+VsmOvV8sirwAAAAAAAAAALN4AD0ULrM3mrqfMt+fBLGtyea4UgMeswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGrGH+IdlyMAWyUS/GMAXSUR0CTZVTb349HdX2UKGgGR0BxzhlBhQWOaAdNAQFoCEdAk2WkDZDiO3V9lChoBkdAcmoV81Gb1GgHTQABaAhHQJNlxvl2eQN1fZQoaAZHQHAUlc2R7qpoB0vQaAhHQJNmMWDYh+x1fZQoaAZHQHNg+KsMiKRoB01CAWgIR0CTZock+otMdX2UKGgGR0BwaxbcGkeqaAdL7GgIR0CTZ6KaXrt3dX2UKGgGR0BxSBeAuqWDaAdL0WgIR0CTaCxNZeRgdX2UKGgGR0By633RG+bmaAdNOgFoCEdAk2i/B7/n4nV9lChoBkdAc8Bx+az/qGgHS/FoCEdAk2j854nndXV9lChoBkdAcwQz5GjKxWgHS/JoCEdAk2kHsLORknV9lChoBkdAcXyqGUOd5WgHTRQBaAhHQJNpQ9pyp711fZQoaAZHQHDc/g3tKI1oB0u7aAhHQJNpk384xUN1fZQoaAZHQG8O3qiXY15oB0vbaAhHQJNpncCYCyR1fZQoaAZHQEnkRoRIz31oB0ubaAhHQJNpmpFTeft1fZQoaAZHQHHqblRxcVxoB00kAWgIR0CTaheVcD8tdX2UKGgGR0Bw4yyMUAT7aAdL0WgIR0CTalBF/hESdX2UKGgGR0Bw22k43m3faAdL8GgIR0CTalUFjd56dX2UKGgGR0ByezFwT/Q0aAdL82gIR0CTa939aUzLdX2UKGgGR0Bx3sVmBe5XaAdNGQFoCEdAk2w2wzLwF3V9lChoBkdAciwvtMPBi2gHS9NoCEdAk20Rlg+hXnV9lChoBkdAbYvlRP420mgHS81oCEdAk22yB06o2nV9lChoBkdAcaLSBshxHWgHTREBaAhHQJNuNaY/mkp1fZQoaAZHQHDfmUbDMvBoB0vzaAhHQJNue2rn1Wd1fZQoaAZHQHEGqxxDLKVoB0veaAhHQJNuyEEkjX51fZQoaAZHQHBFsCo0hvBoB0veaAhHQJNu0smOU+t1fZQoaAZHQHHZs4YJmd1oB0vIaAhHQJNvH4i5d4V1fZQoaAZHQHKMNeQdS2poB0v5aAhHQJNvKBNEgGN1fZQoaAZHQHKWu7L+xW1oB0vYaAhHQJNvQH6dlNF1fZQoaAZHQHE54UnG829oB00NAWgIR0CTb+YWtU4rdX2UKGgGR0By30e/5+H8aAdNNwFoCEdAk3Bl1jiGWXV9lChoBkdAc1kfe1rqMWgHTQkBaAhHQJNwsvmHP/t1fZQoaAZHQG+tEhq0tyxoB0vqaAhHQJNxnIBBAwB1fZQoaAZHQHNNQ6U7jkxoB0vKaAhHQJNyA9dNWU91fZQoaAZHQHIfHhjvuw5oB00JAWgIR0CTcqUn5SFXdX2UKGgGR0BVTP/BFd9laAdLvGgIR0CTcvEVWS2ZdX2UKGgGR0Bz0INkOI69aAdLx2gIR0CTh/HpKSPmdX2UKGgGR0BwOQ/6fra/aAdL/WgIR0CTiEN+b3GodX2UKGgGR0Bxk94Uvf0maAdL+GgIR0CTiJohY/3WdX2UKGgGR0BxY0pc5bQkaAdL6GgIR0CTiMGW2PT5dX2UKGgGR0BvAY1FYuCgaAdL4mgIR0CTiSKCg9NfdX2UKGgGR0Bw5qLQ5WBCaAdL62gIR0CTiTlZowmFdX2UKGgGR0BwpbDTBqKxaAdL8GgIR0CTiV4bCJoCdX2UKGgGR0BxvD74zrNXaAdLz2gIR0CTiV0uDjBEdX2UKGgGR0BySbPomoitaAdL52gIR0CTiqK5kK/mdX2UKGgGR0By4EfzSThYaAdNAgFoCEdAk4r4uGsV+XV9lChoBkdAcELp0fYBeWgHS8RoCEdAk4vNBSk0rXV9lChoBkdAcelYukDZDmgHS+toCEdAk4wZ75VOsXV9lChoBkdAcuV/m1YyPGgHTQwBaAhHQJOMgwqRU3p1fZQoaAZHQHDmAzk6tDFoB0vqaAhHQJONHfR/mT11fZQoaAZHQHAcxLK3d9FoB0veaAhHQJONcbwSamZ1fZQoaAZHQHIJpF9a2WpoB0vYaAhHQJON9uzhP0t1fZQoaAZHQG6QnB+F10VoB0vXaAhHQJOOF98Z1mt1fZQoaAZHQHKEvxx1gYxoB0vMaAhHQJOOKDUVi4J1fZQoaAZHQHH+tDx9XtBoB0vxaAhHQJOOQ3gk1Mx1fZQoaAZHQHEn79VFQVNoB0vWaAhHQJOOoBq9Gqh1fZQoaAZHQHBY56dDpkhoB0vlaAhHQJOO1I065oZ1fZQoaAZHQHNkP4IrvstoB0vlaAhHQJOO9UsFt9B1fZQoaAZHQGDN2uoxYaJoB03oA2gIR0CTjzR8MNMHdX2UKGgGR0By7ACCBf8eaAdL2mgIR0CTkDUW2w3YdX2UKGgGR0BwVmuV5a/zaAdL+WgIR0CTkJi2lVLjdX2UKGgGR0BuWoKlYU35aAdL1WgIR0CTkTTNdJJ5dX2UKGgGR0ByTfSjQAuJaAdLzmgIR0CTktRdQfp2dX2UKGgGR0Bwzb7O3UhFaAdLy2gIR0CTkvMoMKCydX2UKGgGR0BnTb30wrUcaAdN6ANoCEdAk5MYc3l0YHV9lChoBkdAc1a4lyBClmgHS/hoCEdAk5Mc9Oh0yXV9lChoBkdAcg0w7T2FnWgHTTIBaAhHQJOTTznRsuZ1fZQoaAZHQHEnwFotcwBoB00gAWgIR0CTk5WBBiTddX2UKGgGR0BtwxXyRSxaaAdL4GgIR0CTk5/KhcqwdX2UKGgGR0ByBjJKaoddaAdL2mgIR0CTk9D7655JdX2UKGgGR0BwqAbtJFspaAdLzGgIR0CTlBd07r9mdX2UKGgGR0BxjMbXHzYmaAdL72gIR0CTlJVUdaMadX2UKGgGR0BzULwe/5+IaAdNHwFoCEdAk5TQGwA2h3V9lChoBkdAcMS9qDbrT2gHTRYBaAhHQJOVV5hScb11fZQoaAZHQHNWR91EE1VoB0vYaAhHQJOVadbxEv11fZQoaAZHQHHJHcL0BfdoB0vraAhHQJOWK+M6zVt1fZQoaAZHQHKOkM9bHIZoB014AWgIR0CTlkBNmDlHdX2UKGgGR0BuSbDO1OTJaAdL5GgIR0CTlo26kIomdX2UKGgGR0BxS/mzSkTIaAdLyGgIR0CTl2np0OmSdX2UKGgGR0AwCZbY9Pk8aAdLtWgIR0CTl8lGgBcSdX2UKGgGR0BwPS7xusLfaAdL7WgIR0CTmDZYgaFVdX2UKGgGR0BwTWv5gw49aAdL5mgIR0CTmMNhVlwtdX2UKGgGR0Bx+1DkU9IPaAdL+WgIR0CTmMEkjX4CdX2UKGgGR0Bz1mCROk+HaAdNBAFoCEdAk5j/mYBvJnV9lChoBkdAcQj9Brvb5GgHS+1oCEdAk5l3d43WF3V9lChoBkdAbrrpJwsGxGgHTQYBaAhHQJOZfjjrAxl1fZQoaAZHQHIE3QhOgxtoB0vuaAhHQJOaAVnEl3R1fZQoaAZHQHHlAUDdP+JoB0vxaAhHQJOaU6ltTDR1fZQoaAZHQHHKRa5f+jxoB0vmaAhHQJOal7v5P/J1fZQoaAZHQHL0Fs+FDfFoB0vPaAhHQJObDHT7VKB1fZQoaAZHQFKk+y7f51xoB0ulaAhHQJOcx5fMOgB1fZQoaAZHQHExJ3xFy7xoB0veaAhHQJOc2CGvfTF1fZQoaAZHQHCrzbFjurpoB006AWgIR0CTndwGW2PUdX2UKGgGR0ByzcaNuLrHaAdL9GgIR0CTnfZRKpT/dX2UKGgGR0ByxcqrilzmaAdNLAFoCEdAk53+t8uzyHV9lChoBkdAcQfIdlum8GgHS9VoCEdAk54wP/aQFXV9lChoBkdAcS0DdP+GXWgHTckBaAhHQJOeP4L1EmZ1fZQoaAZHQG+aDohY/3ZoB0v8aAhHQJOek4BFNL11fZQoaAZHQHIRhgRbr1NoB0viaAhHQJOeu/bj94x1fZQoaAZHQG/+KKP4mC1oB0vSaAhHQJOe0m/nGKh1fZQoaAZHQHJVdoi9qUNoB0vcaAhHQJOfAbkwN9Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a786e6dba0e94aac8ec7363f859ea824d53d335a802b89d98afa40497795ea84
|
3 |
+
size 147988
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b73c11bea70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b73c11beb00>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b73c11beb90>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b73c11bec20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b73c11becb0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b73c11bed40>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b73c11bedd0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b73c11bee60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b73c11beef0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b73c11bef80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b73c11bf010>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b73c11bf0a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b73c1369100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1718885145184049666,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAED8zj1Ic626pWcFOOuXAzP3lWS6VMMYtwAAgD8AAIA/zcy8NvRslT4CHos8vCOXvkm9Cb29r6Y8AAAAAAAAAACa10A8XulNPy36BLoy+wa/NWyjvAkevbsAAAAAAAAAAOb1hz0HixI/Bjr/O+PF4b6lHCw9om6/PAAAAAAAAAAAgIckvii5irzlIgG+fg2dvHde8T3l/Xs9AACAPwAAgD9m/DM891kBPp4uRL2PQ1i+qh4bvaZpxToAAAAAAAAAAHDT9T6ucQS+3GoIPUnQn7o+eU89Yqk3PQAAgD8AAIA/M2l5va5Zgbo4jWa2HsxXsalCYTpt7YY1AACAPwAAgD/NtGS7RJ+oPUKjMj5tgQ2+OXILPQC5NT0AAAAAAAAAANARsz4ArBY/HvQ0vs31sr4cJzg+vlAJvgAAAAAAAAAApusMvvXQED8Kghe7GsEKv/VYQb5+TFk8AAAAAAAAAADek4K+R/kNPzHNhb1j4QW/fuWZvj0c3z0AAAAAAAAAABIvjr6oSpc/jZ/2vpb0R79KPqK+MWU5vgAAAAAAAAAAwCeBvX9KLD9Lxy89goYNvxV1XL2G1Zk9AAAAAAAAAADNU5W92WgYP5rbzT1g8PO+VsmOvV8sirwAAAAAAAAAALN4AD0ULrM3mrqfMt+fBLGtyea4UgMeswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGrGH+IdlyMAWyUS/GMAXSUR0CTZVTb349HdX2UKGgGR0BxzhlBhQWOaAdNAQFoCEdAk2WkDZDiO3V9lChoBkdAcmoV81Gb1GgHTQABaAhHQJNlxvl2eQN1fZQoaAZHQHAUlc2R7qpoB0vQaAhHQJNmMWDYh+x1fZQoaAZHQHNg+KsMiKRoB01CAWgIR0CTZock+otMdX2UKGgGR0BwaxbcGkeqaAdL7GgIR0CTZ6KaXrt3dX2UKGgGR0BxSBeAuqWDaAdL0WgIR0CTaCxNZeRgdX2UKGgGR0By633RG+bmaAdNOgFoCEdAk2i/B7/n4nV9lChoBkdAc8Bx+az/qGgHS/FoCEdAk2j854nndXV9lChoBkdAcwQz5GjKxWgHS/JoCEdAk2kHsLORknV9lChoBkdAcXyqGUOd5WgHTRQBaAhHQJNpQ9pyp711fZQoaAZHQHDc/g3tKI1oB0u7aAhHQJNpk384xUN1fZQoaAZHQG8O3qiXY15oB0vbaAhHQJNpncCYCyR1fZQoaAZHQEnkRoRIz31oB0ubaAhHQJNpmpFTeft1fZQoaAZHQHHqblRxcVxoB00kAWgIR0CTaheVcD8tdX2UKGgGR0Bw4yyMUAT7aAdL0WgIR0CTalBF/hESdX2UKGgGR0Bw22k43m3faAdL8GgIR0CTalUFjd56dX2UKGgGR0ByezFwT/Q0aAdL82gIR0CTa939aUzLdX2UKGgGR0Bx3sVmBe5XaAdNGQFoCEdAk2w2wzLwF3V9lChoBkdAciwvtMPBi2gHS9NoCEdAk20Rlg+hXnV9lChoBkdAbYvlRP420mgHS81oCEdAk22yB06o2nV9lChoBkdAcaLSBshxHWgHTREBaAhHQJNuNaY/mkp1fZQoaAZHQHDfmUbDMvBoB0vzaAhHQJNue2rn1Wd1fZQoaAZHQHEGqxxDLKVoB0veaAhHQJNuyEEkjX51fZQoaAZHQHBFsCo0hvBoB0veaAhHQJNu0smOU+t1fZQoaAZHQHHZs4YJmd1oB0vIaAhHQJNvH4i5d4V1fZQoaAZHQHKMNeQdS2poB0v5aAhHQJNvKBNEgGN1fZQoaAZHQHKWu7L+xW1oB0vYaAhHQJNvQH6dlNF1fZQoaAZHQHE54UnG829oB00NAWgIR0CTb+YWtU4rdX2UKGgGR0By30e/5+H8aAdNNwFoCEdAk3Bl1jiGWXV9lChoBkdAc1kfe1rqMWgHTQkBaAhHQJNwsvmHP/t1fZQoaAZHQG+tEhq0tyxoB0vqaAhHQJNxnIBBAwB1fZQoaAZHQHNNQ6U7jkxoB0vKaAhHQJNyA9dNWU91fZQoaAZHQHIfHhjvuw5oB00JAWgIR0CTcqUn5SFXdX2UKGgGR0BVTP/BFd9laAdLvGgIR0CTcvEVWS2ZdX2UKGgGR0Bz0INkOI69aAdLx2gIR0CTh/HpKSPmdX2UKGgGR0BwOQ/6fra/aAdL/WgIR0CTiEN+b3GodX2UKGgGR0Bxk94Uvf0maAdL+GgIR0CTiJohY/3WdX2UKGgGR0BxY0pc5bQkaAdL6GgIR0CTiMGW2PT5dX2UKGgGR0BvAY1FYuCgaAdL4mgIR0CTiSKCg9NfdX2UKGgGR0Bw5qLQ5WBCaAdL62gIR0CTiTlZowmFdX2UKGgGR0BwpbDTBqKxaAdL8GgIR0CTiV4bCJoCdX2UKGgGR0BxvD74zrNXaAdLz2gIR0CTiV0uDjBEdX2UKGgGR0BySbPomoitaAdL52gIR0CTiqK5kK/mdX2UKGgGR0By4EfzSThYaAdNAgFoCEdAk4r4uGsV+XV9lChoBkdAcELp0fYBeWgHS8RoCEdAk4vNBSk0rXV9lChoBkdAcelYukDZDmgHS+toCEdAk4wZ75VOsXV9lChoBkdAcuV/m1YyPGgHTQwBaAhHQJOMgwqRU3p1fZQoaAZHQHDmAzk6tDFoB0vqaAhHQJONHfR/mT11fZQoaAZHQHAcxLK3d9FoB0veaAhHQJONcbwSamZ1fZQoaAZHQHIJpF9a2WpoB0vYaAhHQJON9uzhP0t1fZQoaAZHQG6QnB+F10VoB0vXaAhHQJOOF98Z1mt1fZQoaAZHQHKEvxx1gYxoB0vMaAhHQJOOKDUVi4J1fZQoaAZHQHH+tDx9XtBoB0vxaAhHQJOOQ3gk1Mx1fZQoaAZHQHEn79VFQVNoB0vWaAhHQJOOoBq9Gqh1fZQoaAZHQHBY56dDpkhoB0vlaAhHQJOO1I065oZ1fZQoaAZHQHNkP4IrvstoB0vlaAhHQJOO9UsFt9B1fZQoaAZHQGDN2uoxYaJoB03oA2gIR0CTjzR8MNMHdX2UKGgGR0By7ACCBf8eaAdL2mgIR0CTkDUW2w3YdX2UKGgGR0BwVmuV5a/zaAdL+WgIR0CTkJi2lVLjdX2UKGgGR0BuWoKlYU35aAdL1WgIR0CTkTTNdJJ5dX2UKGgGR0ByTfSjQAuJaAdLzmgIR0CTktRdQfp2dX2UKGgGR0Bwzb7O3UhFaAdLy2gIR0CTkvMoMKCydX2UKGgGR0BnTb30wrUcaAdN6ANoCEdAk5MYc3l0YHV9lChoBkdAc1a4lyBClmgHS/hoCEdAk5Mc9Oh0yXV9lChoBkdAcg0w7T2FnWgHTTIBaAhHQJOTTznRsuZ1fZQoaAZHQHEnwFotcwBoB00gAWgIR0CTk5WBBiTddX2UKGgGR0BtwxXyRSxaaAdL4GgIR0CTk5/KhcqwdX2UKGgGR0ByBjJKaoddaAdL2mgIR0CTk9D7655JdX2UKGgGR0BwqAbtJFspaAdLzGgIR0CTlBd07r9mdX2UKGgGR0BxjMbXHzYmaAdL72gIR0CTlJVUdaMadX2UKGgGR0BzULwe/5+IaAdNHwFoCEdAk5TQGwA2h3V9lChoBkdAcMS9qDbrT2gHTRYBaAhHQJOVV5hScb11fZQoaAZHQHNWR91EE1VoB0vYaAhHQJOVadbxEv11fZQoaAZHQHHJHcL0BfdoB0vraAhHQJOWK+M6zVt1fZQoaAZHQHKOkM9bHIZoB014AWgIR0CTlkBNmDlHdX2UKGgGR0BuSbDO1OTJaAdL5GgIR0CTlo26kIomdX2UKGgGR0BxS/mzSkTIaAdLyGgIR0CTl2np0OmSdX2UKGgGR0AwCZbY9Pk8aAdLtWgIR0CTl8lGgBcSdX2UKGgGR0BwPS7xusLfaAdL7WgIR0CTmDZYgaFVdX2UKGgGR0BwTWv5gw49aAdL5mgIR0CTmMNhVlwtdX2UKGgGR0Bx+1DkU9IPaAdL+WgIR0CTmMEkjX4CdX2UKGgGR0Bz1mCROk+HaAdNBAFoCEdAk5j/mYBvJnV9lChoBkdAcQj9Brvb5GgHS+1oCEdAk5l3d43WF3V9lChoBkdAbrrpJwsGxGgHTQYBaAhHQJOZfjjrAxl1fZQoaAZHQHIE3QhOgxtoB0vuaAhHQJOaAVnEl3R1fZQoaAZHQHHlAUDdP+JoB0vxaAhHQJOaU6ltTDR1fZQoaAZHQHHKRa5f+jxoB0vmaAhHQJOal7v5P/J1fZQoaAZHQHL0Fs+FDfFoB0vPaAhHQJObDHT7VKB1fZQoaAZHQFKk+y7f51xoB0ulaAhHQJOcx5fMOgB1fZQoaAZHQHExJ3xFy7xoB0veaAhHQJOc2CGvfTF1fZQoaAZHQHCrzbFjurpoB006AWgIR0CTndwGW2PUdX2UKGgGR0ByzcaNuLrHaAdL9GgIR0CTnfZRKpT/dX2UKGgGR0ByxcqrilzmaAdNLAFoCEdAk53+t8uzyHV9lChoBkdAcQfIdlum8GgHS9VoCEdAk54wP/aQFXV9lChoBkdAcS0DdP+GXWgHTckBaAhHQJOeP4L1EmZ1fZQoaAZHQG+aDohY/3ZoB0v8aAhHQJOek4BFNL11fZQoaAZHQHIRhgRbr1NoB0viaAhHQJOeu/bj94x1fZQoaAZHQG/+KKP4mC1oB0vSaAhHQJOe0m/nGKh1fZQoaAZHQHJVdoi9qUNoB0vcaAhHQJOfAbkwN9Z1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46ec198fbe93e1e1ba95361e56e0a6eb1d5676cedcb3e601f748c88cb6df4f77
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96da2538e7ddf292c7df85e6db6fcb1a3c707fd929ca8d3966a7dd0cbb0b8050
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (159 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 282.81843566280384, "std_reward": 18.575251676914448, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-20T12:42:08.679657"}
|