File size: 2,493 Bytes
da14f17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: 10_randomization_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10_randomization_model

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1399
- Bleu: 0.0001
- Wer: 0.9311
- Rougel: 0.1663
- Gen Len: 18.9987

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Wer    | Rougel | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:-------:|
| 0.716         | 0.16  | 1000  | 0.2572          | 0.0001 | 0.932  | 0.1648 | 18.9987 |
| 0.2981        | 0.32  | 2000  | 0.2055          | 0.0001 | 0.9317 | 0.1655 | 18.9987 |
| 0.2596        | 0.48  | 3000  | 0.1836          | 0.0001 | 0.9315 | 0.1658 | 18.9987 |
| 0.2371        | 0.64  | 4000  | 0.1685          | 0.0001 | 0.9314 | 0.1659 | 18.9987 |
| 0.2266        | 0.8   | 5000  | 0.1616          | 0.0001 | 0.9313 | 0.1661 | 18.9987 |
| 0.2134        | 0.96  | 6000  | 0.1531          | 0.0001 | 0.9313 | 0.1662 | 18.9987 |
| 0.2035        | 1.12  | 7000  | 0.1505          | 0.0001 | 0.9312 | 0.1662 | 18.9987 |
| 0.1973        | 1.28  | 8000  | 0.1466          | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1942        | 1.44  | 9000  | 0.1430          | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1905        | 1.6   | 10000 | 0.1416          | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1892        | 1.76  | 11000 | 0.1402          | 0.0001 | 0.9312 | 0.1663 | 18.9987 |
| 0.1867        | 1.92  | 12000 | 0.1399          | 0.0001 | 0.9311 | 0.1663 | 18.9987 |


### Framework versions

- Transformers 4.37.1
- Pytorch 2.3.0.dev20240122+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1