File size: 2,471 Bytes
ae4e178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: 10pos_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10pos_model

This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3032
- Bleu: 0.0001
- Wer: 0.9323
- Rougel: 0.1628
- Gen Len: 18.9983

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Bleu   | Wer    | Rougel | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:-------:|
| 0.8158        | 0.16  | 1000  | 0.3327          | 0.0001 | 0.933  | 0.1616 | 18.999  |
| 0.3791        | 0.32  | 2000  | 0.3029          | 0.0001 | 0.9326 | 0.1623 | 18.9988 |
| 0.3536        | 0.48  | 3000  | 0.2901          | 0.0001 | 0.9325 | 0.1624 | 18.9988 |
| 0.3353        | 0.64  | 4000  | 0.2822          | 0.0001 | 0.9324 | 0.1626 | 18.9987 |
| 0.3333        | 0.8   | 5000  | 0.2774          | 0.0001 | 0.9323 | 0.1627 | 18.9987 |
| 0.3258        | 0.96  | 6000  | 0.2742          | 0.0001 | 0.9322 | 0.1627 | 18.9987 |
| 0.3267        | 1.12  | 7000  | 0.2811          | 0.0001 | 0.9323 | 0.1627 | 18.9984 |
| 0.3532        | 1.28  | 8000  | 0.2960          | 0.0001 | 0.9322 | 0.1629 | 18.9983 |
| 0.3859        | 1.44  | 9000  | 0.3083          | 0.0001 | 0.9323 | 0.1629 | 18.9983 |
| 0.3867        | 1.6   | 10000 | 0.3054          | 0.0001 | 0.9323 | 0.1628 | 18.9983 |
| 0.3807        | 1.76  | 11000 | 0.3038          | 0.0001 | 0.9323 | 0.1628 | 18.9983 |
| 0.3807        | 1.92  | 12000 | 0.3032          | 0.0001 | 0.9323 | 0.1628 | 18.9983 |


### Framework versions

- Transformers 4.37.1
- Pytorch 2.3.0.dev20240122+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1