Model save
Browse files- README.md +71 -94
- generation_config.json +6 -6
README.md
CHANGED
@@ -1,94 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
base_model: t5-
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
metrics:
|
7 |
-
- bleu
|
8 |
-
- wer
|
9 |
-
model-index:
|
10 |
-
- name: randomization_model_new
|
11 |
-
results: []
|
12 |
-
---
|
13 |
-
|
14 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
-
should probably proofread and complete it, then remove this comment. -->
|
16 |
-
|
17 |
-
# randomization_model_new
|
18 |
-
|
19 |
-
This model is a fine-tuned version of [t5-
|
20 |
-
It achieves the following results on the evaluation set:
|
21 |
-
- Loss:
|
22 |
-
- Bleu: 0.
|
23 |
-
- Wer: 0.
|
24 |
-
- Rougel: 0.
|
25 |
-
- Gen Len: 19.0
|
26 |
-
|
27 |
-
## Model description
|
28 |
-
|
29 |
-
More information needed
|
30 |
-
|
31 |
-
## Intended uses & limitations
|
32 |
-
|
33 |
-
More information needed
|
34 |
-
|
35 |
-
## Training and evaluation data
|
36 |
-
|
37 |
-
More information needed
|
38 |
-
|
39 |
-
## Training procedure
|
40 |
-
|
41 |
-
### Training hyperparameters
|
42 |
-
|
43 |
-
The following hyperparameters were used during training:
|
44 |
-
- learning_rate: 2e-05
|
45 |
-
- train_batch_size:
|
46 |
-
- eval_batch_size:
|
47 |
-
- seed: 42
|
48 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
-
- lr_scheduler_type: linear
|
50 |
-
- num_epochs: 3
|
51 |
-
- mixed_precision_training: Native AMP
|
52 |
-
|
53 |
-
### Training results
|
54 |
-
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Bleu
|
56 |
-
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
| 1.9495 | 1.6 | 1600 | 1.6381 | 0.0001 | 0.9539 | 0.1242 | 19.0 |
|
73 |
-
| 1.964 | 1.7 | 1700 | 1.6310 | 0.0001 | 0.9537 | 0.1244 | 19.0 |
|
74 |
-
| 1.9228 | 1.8 | 1800 | 1.6233 | 0.0001 | 0.9537 | 0.1245 | 19.0 |
|
75 |
-
| 1.9449 | 1.9 | 1900 | 1.6184 | 0.0001 | 0.9535 | 0.1248 | 19.0 |
|
76 |
-
| 1.9273 | 2.0 | 2000 | 1.6118 | 0.0001 | 0.9536 | 0.1245 | 19.0 |
|
77 |
-
| 1.9191 | 2.1 | 2100 | 1.6066 | 0.0001 | 0.9535 | 0.1248 | 19.0 |
|
78 |
-
| 1.9337 | 2.2 | 2200 | 1.6031 | 0.0001 | 0.9534 | 0.1251 | 19.0 |
|
79 |
-
| 1.9273 | 2.3 | 2300 | 1.5989 | 0.0001 | 0.9535 | 0.1253 | 19.0 |
|
80 |
-
| 1.9076 | 2.4 | 2400 | 1.5945 | 0.0001 | 0.9535 | 0.1251 | 19.0 |
|
81 |
-
| 1.8714 | 2.5 | 2500 | 1.5939 | 0.0001 | 0.9534 | 0.1253 | 19.0 |
|
82 |
-
| 1.9247 | 2.6 | 2600 | 1.5915 | 0.0001 | 0.9533 | 0.1253 | 19.0 |
|
83 |
-
| 1.8908 | 2.7 | 2700 | 1.5884 | 0.0001 | 0.9532 | 0.1256 | 19.0 |
|
84 |
-
| 1.8858 | 2.8 | 2800 | 1.5875 | 0.0001 | 0.9532 | 0.1254 | 19.0 |
|
85 |
-
| 1.9158 | 2.9 | 2900 | 1.5872 | 0.0001 | 0.9532 | 0.1256 | 19.0 |
|
86 |
-
| 1.8725 | 3.0 | 3000 | 1.5870 | 0.0001 | 0.9532 | 0.1256 | 19.0 |
|
87 |
-
|
88 |
-
|
89 |
-
### Framework versions
|
90 |
-
|
91 |
-
- Transformers 4.41.0
|
92 |
-
- Pytorch 2.3.0+cu121
|
93 |
-
- Datasets 2.19.1
|
94 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: t5-small
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- bleu
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: randomization_model_new
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# randomization_model_new
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.5559
|
22 |
+
- Bleu: 0.0
|
23 |
+
- Wer: 0.9616
|
24 |
+
- Rougel: 0.1052
|
25 |
+
- Gen Len: 19.0
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 20
|
46 |
+
- eval_batch_size: 20
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 3
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Wer | Rougel | Gen Len |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:----:|:------:|:------:|:-------:|
|
57 |
+
| 3.4449 | 0.4 | 100 | 2.9554 | 0.0 | 0.9649 | 0.0961 | 18.99 |
|
58 |
+
| 3.2957 | 0.8 | 200 | 2.7974 | 0.0 | 0.964 | 0.0989 | 18.984 |
|
59 |
+
| 3.1923 | 1.2 | 300 | 2.6976 | 0.0 | 0.9629 | 0.1013 | 18.9945 |
|
60 |
+
| 3.1268 | 1.6 | 400 | 2.6331 | 0.0 | 0.9626 | 0.1025 | 18.9985 |
|
61 |
+
| 3.0741 | 2.0 | 500 | 2.5914 | 0.0 | 0.962 | 0.104 | 18.997 |
|
62 |
+
| 3.0514 | 2.4 | 600 | 2.5671 | 0.0 | 0.9616 | 0.105 | 18.997 |
|
63 |
+
| 3.0312 | 2.8 | 700 | 2.5559 | 0.0 | 0.9616 | 0.1052 | 19.0 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.41.0
|
69 |
+
- Pytorch 2.3.0
|
70 |
+
- Datasets 2.19.1
|
71 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
{
|
2 |
-
"decoder_start_token_id": 0,
|
3 |
-
"eos_token_id": 1,
|
4 |
-
"pad_token_id": 0,
|
5 |
-
"transformers_version": "4.41.0"
|
6 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"decoder_start_token_id": 0,
|
3 |
+
"eos_token_id": 1,
|
4 |
+
"pad_token_id": 0,
|
5 |
+
"transformers_version": "4.41.0"
|
6 |
+
}
|