File size: 2,389 Bytes
4cb560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af6dc74
4cb560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aee9f7
4cb560f
 
 
 
 
af6dc74
 
4cb560f
af6dc74
4cb560f
 
 
 
 
5aee9f7
4cb560f
 
af6dc74
4cb560f
af6dc74
 
4cb560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: 
- apache-2.0
language:
- en
tags:
- Diffusion Models
- Stable Diffusion XL
- Perturbed-Attention Guidance
- PAG
---
# Perturbed-Attention Guidance for SDXL (i2i)

The original Perturbed-Attention Guidance for unconditional models and SD1.5 by [Hyoungwon Cho](https://huggingface.co/hyoungwoncho) is availiable at [hyoungwoncho/sd_perturbed_attention_guidance](https://huggingface.co/hyoungwoncho/sd_perturbed_attention_guidance)

[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)

Also there is an extra implementation of the Perturbed-Attention Guidance (PAG) on Stable Diffusion XL (SDXL) for the 🧨 diffusers library by [multimodalart](https://huggingface.co/multimodalart)
[code](https://huggingface.co/multimodalart/sdxl_perturbed_attention_guidance) / [demo](https://huggingface.co/spaces/multimodalart/perturbed-attention-guidance-sdxl) 

This repository is just a simple implementation of the Perturbed-Attention Guidance (PAG) on Stable Diffusion XL (SDXL) for the 🧨 diffusers library to "image-to-image".


## Quickstart

Loading Custom Pipeline:

```py
from diffusers import StableDiffusionXLImg2ImgPipeline
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    custom_pipeline="jyoung105/sdxl_perturbed_attention_guidance_i2i",
    torch_dtype=torch.float16
)
device="cuda"
pipe = pipe.to(device)
```

Unconditional sampling with PAG:
![image/jpeg](example 1.jpg)

```py
output = pipe(
        "",
        image=init_image,
        strength=0.6,
        num_inference_steps=40,
        guidance_scale=0.0,
        pag_scale=4.0,
        pag_applied_layers=['mid']
    ).images
```

Sampling with PAG and CFG:
![image/jpeg](example 2.jpg)
```py
output = pipe(
        "A man with hoodie on is looking at sky, photo",
        image=init_image,
        strength=0.6,
        num_inference_steps=40,
        guidance_scale=4.0,
        pag_scale=3.0,
        pag_applied_layers=['mid']
    ).images
```

## Parameters

`guidance_scale` : guidance scale of CFG (ex: `7.5`)

`pag_scale` : guidance scale of PAG (ex: `4.0`)

`pag_applied_layers`: layer to apply perturbation (ex: ['mid'])

`pag_applied_layers_index` : index of the layers to apply perturbation (ex: ['m0', 'm1'])