|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import PIL.Image |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from packaging import version |
|
|
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
IPAdapterMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
Attention, |
|
AttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
is_invisible_watermark_available, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
|
|
|
|
if is_invisible_watermark_available(): |
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL |
|
>>> from diffusers.utils import load_image |
|
>>> vae = AutoencoderKL.from_pretrained( |
|
... "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-xl-base-1.0", custom_pipeline="jyoung105/sdxl_perturbed_attention_guidance_i2i", vae=vae, torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
>>> prompt = "a photo of an astronaut riding a horse on mars" |
|
>>> init_image = load_image("") |
|
>>> image = pipe(prompt, image=init_image, strength=0.9, pag_scale=3.0, pag_applied_layers=['mid']).images[0] |
|
``` |
|
""" |
|
|
|
|
|
class PAGIdentitySelfAttnProcessor: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_org.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states_org) |
|
key = attn.to_k(hidden_states_org) |
|
value = attn.to_v(hidden_states_org) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states_org = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states_org = hidden_states_org.to(query.dtype) |
|
|
|
|
|
hidden_states_org = attn.to_out[0](hidden_states_org) |
|
|
|
hidden_states_org = attn.to_out[1](hidden_states_org) |
|
|
|
if input_ndim == 4: |
|
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_ptb.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) |
|
|
|
value = attn.to_v(hidden_states_ptb) |
|
|
|
|
|
hidden_states_ptb = value |
|
|
|
hidden_states_ptb = hidden_states_ptb.to(query.dtype) |
|
|
|
|
|
hidden_states_ptb = attn.to_out[0](hidden_states_ptb) |
|
|
|
hidden_states_ptb = attn.to_out[1](hidden_states_ptb) |
|
|
|
if input_ndim == 4: |
|
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class PAGCFGIdentitySelfAttnProcessor: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) |
|
hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_org.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states_org) |
|
key = attn.to_k(hidden_states_org) |
|
value = attn.to_v(hidden_states_org) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states_org = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states_org = hidden_states_org.to(query.dtype) |
|
|
|
|
|
hidden_states_org = attn.to_out[0](hidden_states_org) |
|
|
|
hidden_states_org = attn.to_out[1](hidden_states_org) |
|
|
|
if input_ndim == 4: |
|
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_ptb.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) |
|
|
|
value = attn.to_v(hidden_states_ptb) |
|
hidden_states_ptb = value |
|
hidden_states_ptb = hidden_states_ptb.to(query.dtype) |
|
|
|
|
|
hidden_states_ptb = attn.to_out[0](hidden_states_ptb) |
|
|
|
hidden_states_ptb = attn.to_out[1](hidden_states_ptb) |
|
|
|
if input_ndim == 4: |
|
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class StableDiffusionXLImg2ImgPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
TextualInversionLoaderMixin, |
|
FromSingleFileMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
IPAdapterMixin, |
|
): |
|
r""" |
|
Pipeline for image-to-image generation using Stable Diffusion XL. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([` CLIPTextModelWithProjection`]): |
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
specifically the |
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`CLIPTokenizer`): |
|
Second Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): |
|
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of |
|
`stabilityai/stable-diffusion-xl-base-1-0`. |
|
add_watermarker (`bool`, *optional*): |
|
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to |
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no |
|
watermarker will be used. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" |
|
_optional_components = [ |
|
"tokenizer", |
|
"tokenizer_2", |
|
"text_encoder", |
|
"text_encoder_2", |
|
"image_encoder", |
|
"feature_extractor", |
|
] |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
"add_text_embeds", |
|
"add_time_ids", |
|
"negative_pooled_prompt_embeds", |
|
"negative_add_time_ids", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
feature_extractor: CLIPImageProcessor = None, |
|
requires_aesthetics_score: bool = False, |
|
force_zeros_for_empty_prompt: bool = True, |
|
add_watermarker: Optional[bool] = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
image_encoder=image_encoder, |
|
feature_extractor=feature_extractor, |
|
scheduler=scheduler, |
|
) |
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) |
|
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
self.default_sample_size = self.unet.config.sample_size |
|
|
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() |
|
|
|
if add_watermarker: |
|
self.watermark = StableDiffusionXLWatermarker() |
|
else: |
|
self.watermark = None |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
if clip_skip is None: |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
else: |
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
negative_prompt_2 = ( |
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 |
|
) |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
if self.text_encoder_2 is not None: |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
if self.text_encoder_2 is not None: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
strength, |
|
num_inference_steps, |
|
callback_steps, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
ip_adapter_image=None, |
|
ip_adapter_image_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
if num_inference_steps is None: |
|
raise ValueError("`num_inference_steps` cannot be None.") |
|
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: |
|
raise ValueError( |
|
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type" |
|
f" {type(num_inference_steps)}." |
|
) |
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
raise ValueError( |
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
) |
|
|
|
if ip_adapter_image_embeds is not None: |
|
if not isinstance(ip_adapter_image_embeds, list): |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" |
|
) |
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" |
|
) |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): |
|
|
|
if denoising_start is None: |
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
else: |
|
t_start = 0 |
|
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
|
|
|
|
if denoising_start is not None: |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (denoising_start * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
|
|
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() |
|
if self.scheduler.order == 2 and num_inference_steps % 2 == 0: |
|
|
|
|
|
|
|
|
|
|
|
|
|
num_inference_steps = num_inference_steps + 1 |
|
|
|
|
|
timesteps = timesteps[-num_inference_steps:] |
|
return timesteps, num_inference_steps |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def prepare_latents( |
|
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True |
|
): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
latents_mean = latents_std = None |
|
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None: |
|
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1) |
|
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None: |
|
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.text_encoder_2.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
|
|
else: |
|
|
|
if self.vae.config.force_upcast: |
|
image = image.float() |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
if self.vae.config.force_upcast: |
|
self.vae.to(dtype) |
|
|
|
init_latents = init_latents.to(dtype) |
|
if latents_mean is not None and latents_std is not None: |
|
latents_mean = latents_mean.to(device=self.device, dtype=dtype) |
|
latents_std = latents_std.to(device=self.device, dtype=dtype) |
|
init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std |
|
else: |
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
if add_noise: |
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
|
|
latents = init_latents |
|
|
|
return latents |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance |
|
): |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
image_embeds = [] |
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers |
|
): |
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) |
|
single_image_embeds, single_negative_image_embeds = self.encode_image( |
|
single_ip_adapter_image, device, 1, output_hidden_state |
|
) |
|
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) |
|
single_negative_image_embeds = torch.stack( |
|
[single_negative_image_embeds] * num_images_per_prompt, dim=0 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
single_image_embeds = single_image_embeds.to(device) |
|
|
|
image_embeds.append(single_image_embeds) |
|
else: |
|
repeat_dims = [1] |
|
image_embeds = [] |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
single_negative_image_embeds = single_negative_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) |
|
) |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
else: |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
image_embeds.append(single_image_embeds) |
|
|
|
return image_embeds |
|
|
|
def _get_add_time_ids( |
|
self, |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
aesthetic_score, |
|
negative_aesthetic_score, |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype, |
|
text_encoder_projection_dim=None |
|
): |
|
if self.config.requires_aesthetics_score: |
|
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) |
|
add_neg_time_ids = list( |
|
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,) |
|
) |
|
else: |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size) |
|
|
|
passed_add_embed_dim = ( |
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim |
|
) |
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
if ( |
|
expected_add_embed_dim > passed_add_embed_dim |
|
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim |
|
): |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model." |
|
) |
|
elif ( |
|
expected_add_embed_dim < passed_add_embed_dim |
|
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim |
|
): |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model." |
|
) |
|
elif expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) |
|
|
|
return add_time_ids, add_neg_time_ids |
|
|
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
|
|
def get_guidance_scale_embedding( |
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 |
|
) -> torch.FloatTensor: |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
w (`torch.Tensor`): |
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
Dimension of the embeddings to generate. |
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): |
|
Data type of the generated embeddings. |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`. |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
def pred_z0(self, sample, model_output, timestep): |
|
alpha_prod_t = self.scheduler.alphas_cumprod[timestep].to(sample.device) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
if self.scheduler.config.prediction_type == "epsilon": |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
elif self.scheduler.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
elif self.scheduler.config.prediction_type == "v_prediction": |
|
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output |
|
|
|
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `epsilon`, `sample`," |
|
" or `v_prediction`" |
|
) |
|
|
|
return pred_original_sample |
|
|
|
def pred_x0(self, latents, noise_pred, t, generator, device, prompt_embeds, output_type): |
|
pred_z0 = self.pred_z0(latents, noise_pred, t) |
|
pred_x0 = self.vae.decode( |
|
pred_z0 / self.vae.config.scaling_factor, |
|
return_dict=False, |
|
generator=generator |
|
)[0] |
|
|
|
do_denormalize = [True] * pred_x0.shape[0] |
|
pred_x0 = self.image_processor.postprocess(pred_x0, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
return pred_x0 |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def denoising_start(self): |
|
return self._denoising_start |
|
|
|
@property |
|
def denoising_end(self): |
|
return self._denoising_end |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@property |
|
def pag_scale(self): |
|
return self._pag_scale |
|
|
|
@property |
|
def do_adversarial_guidance(self): |
|
return self._pag_scale > 0 |
|
|
|
@property |
|
def pag_adaptive_scaling(self): |
|
return self._pag_adaptive_scaling |
|
|
|
@property |
|
def do_pag_adaptive_scaling(self): |
|
return self._pag_adaptive_scaling > 0 |
|
|
|
@property |
|
def pag_drop_rate(self): |
|
return self._pag_drop_rate |
|
|
|
@property |
|
def pag_applied_layers(self): |
|
return self._pag_applied_layers |
|
|
|
@property |
|
def pag_applied_layers_index(self): |
|
return self._pag_applied_layers_index |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
strength: float = 0.3, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
denoising_start: Optional[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
pag_scale: float = 0.0, |
|
pag_adaptive_scaling: float = 0.0, |
|
pag_drop_rate: float = 0.5, |
|
pag_applied_layers: List[str] = ['mid'], |
|
pag_applied_layers_index: List[str] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
aesthetic_score: float = 6.0, |
|
negative_aesthetic_score: float = 2.5, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
image (`torch.FloatTensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`): |
|
The image(s) to modify with the pipeline. |
|
strength (`float`, *optional*, defaults to 0.3): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` |
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of |
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will |
|
be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of |
|
`denoising_start` being declared as an integer, the value of `strength` will be ignored. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
denoising_start (`float`, *optional*): |
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and |
|
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, |
|
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline |
|
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image |
|
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be |
|
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the |
|
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline |
|
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image |
|
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
aesthetic_score (`float`, *optional*, defaults to 6.0): |
|
Used to simulate an aesthetic score of the generated image by influencing the positive text condition. |
|
Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_aesthetic_score (`float`, *optional*, defaults to 2.5): |
|
Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to |
|
simulate an aesthetic score of the generated image by influencing the negative text condition. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
strength, |
|
num_inference_steps, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._denoising_start = denoising_start |
|
self._denoising_end = denoising_end |
|
self._interrupt = False |
|
|
|
self._pag_scale = pag_scale |
|
self._pag_adaptive_scaling = pag_adaptive_scaling |
|
self._pag_drop_rate = pag_drop_rate |
|
self._pag_applied_layers = pag_applied_layers |
|
self._pag_applied_layers_index = pag_applied_layers_index |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
image = self.image_processor.preprocess(image) |
|
|
|
|
|
def denoising_value_valid(dnv): |
|
return isinstance(dnv, float) and 0 < dnv < 1 |
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps, |
|
strength, |
|
device, |
|
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None, |
|
) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
add_noise = True if self.denoising_start is None else False |
|
|
|
|
|
if latents is None: |
|
latents = self.prepare_latents( |
|
image, |
|
latent_timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
add_noise, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
height, width = latents.shape[-2:] |
|
height = height * self.vae_scale_factor |
|
width = width * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
if negative_original_size is None: |
|
negative_original_size = original_size |
|
if negative_target_size is None: |
|
negative_target_size = target_size |
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
if self.text_encoder_2 is None: |
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) |
|
else: |
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
add_time_ids, add_neg_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
aesthetic_score, |
|
negative_aesthetic_score, |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) |
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_adversarial_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) |
|
|
|
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance: |
|
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([add_text_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
|
|
elif self.do_classifier_free_guidance and self.do_adversarial_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if ( |
|
self.denoising_end is not None |
|
and self.denoising_start is not None |
|
and denoising_value_valid(self.denoising_end) |
|
and denoising_value_valid(self.denoising_start) |
|
and self.denoising_start >= self.denoising_end |
|
): |
|
raise ValueError( |
|
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: " |
|
+ f" {self.denoising_end} when using type float." |
|
) |
|
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
if self.do_adversarial_guidance: |
|
down_layers = [] |
|
mid_layers = [] |
|
up_layers = [] |
|
for name, module in self.unet.named_modules(): |
|
if 'attn1' in name and 'to' not in name: |
|
layer_type = name.split('.')[0].split('_')[0] |
|
if layer_type == 'down': |
|
down_layers.append(module) |
|
elif layer_type == 'mid': |
|
mid_layers.append(module) |
|
elif layer_type == 'up': |
|
up_layers.append(module) |
|
else: |
|
raise ValueError(f"Invalid layer type: {layer_type}") |
|
|
|
self._num_timesteps = len(timesteps) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_adversarial_guidance: |
|
latent_model_input = torch.cat([latents] * 2) |
|
|
|
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance: |
|
latent_model_input = torch.cat([latents] * 2) |
|
|
|
elif self.do_classifier_free_guidance and self.do_adversarial_guidance: |
|
latent_model_input = torch.cat([latents] * 3) |
|
|
|
else: |
|
latent_model_input = latents |
|
|
|
|
|
if self.do_adversarial_guidance: |
|
|
|
if self.do_classifier_free_guidance: |
|
replace_processor = PAGCFGIdentitySelfAttnProcessor() |
|
else: |
|
replace_processor = PAGIdentitySelfAttnProcessor() |
|
|
|
if(self.pag_applied_layers_index): |
|
drop_layers = self.pag_applied_layers_index |
|
for drop_layer in drop_layers: |
|
layer_number = int(drop_layer[1:]) |
|
try: |
|
if drop_layer[0] == 'd': |
|
down_layers[layer_number].processor = replace_processor |
|
elif drop_layer[0] == 'm': |
|
mid_layers[layer_number].processor = replace_processor |
|
elif drop_layer[0] == 'u': |
|
up_layers[layer_number].processor = replace_processor |
|
else: |
|
raise ValueError(f"Invalid layer type: {drop_layer[0]}") |
|
except IndexError: |
|
raise ValueError( |
|
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers." |
|
) |
|
elif(self.pag_applied_layers): |
|
drop_full_layers = self.pag_applied_layers |
|
for drop_full_layer in drop_full_layers: |
|
try: |
|
if drop_full_layer == "down": |
|
for down_layer in down_layers: |
|
down_layer.processor = replace_processor |
|
elif drop_full_layer == "mid": |
|
for mid_layer in mid_layers: |
|
mid_layer.processor = replace_processor |
|
elif drop_full_layer == "up": |
|
for up_layer in up_layers: |
|
up_layer.processor = replace_processor |
|
else: |
|
raise ValueError(f"Invalid layer type: {drop_full_layer}") |
|
except IndexError: |
|
raise ValueError( |
|
f"Invalid layer index: {drop_full_layer}. Available layers are: down, mid and up. If you need to specify each layer index, you can use `pag_applied_layers_index`" |
|
) |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
added_cond_kwargs["image_embeds"] = image_embeds |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_adversarial_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance: |
|
noise_pred_original, noise_pred_perturb = noise_pred.chunk(2) |
|
|
|
signal_scale = self.pag_scale |
|
if self.do_pag_adaptive_scaling: |
|
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000-t) |
|
if signal_scale<0: |
|
signal_scale = 0 |
|
|
|
noise_pred = noise_pred_original + signal_scale * (noise_pred_original - noise_pred_perturb) |
|
|
|
|
|
elif self.do_classifier_free_guidance and self.do_adversarial_guidance: |
|
|
|
noise_pred_uncond, noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(3) |
|
|
|
signal_scale = self.pag_scale |
|
if self.do_pag_adaptive_scaling: |
|
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000-t) |
|
if signal_scale<0: |
|
signal_scale = 0 |
|
|
|
noise_pred = noise_pred_text + (self.guidance_scale-1.0) * (noise_pred_text - noise_pred_uncond) + signal_scale * (noise_pred_text - noise_pred_text_perturb) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) |
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
) |
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) |
|
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
elif latents.dtype != self.vae.dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
self.vae = self.vae.to(latents.dtype) |
|
|
|
|
|
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None |
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None |
|
if has_latents_mean and has_latents_std: |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents_std = ( |
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean |
|
else: |
|
latents = latents / self.vae.config.scaling_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
|
|
if self.do_adversarial_guidance: |
|
if(self.pag_applied_layers_index): |
|
drop_layers = self.pag_applied_layers_index |
|
for drop_layer in drop_layers: |
|
layer_number = int(drop_layer[1:]) |
|
try: |
|
if drop_layer[0] == 'd': |
|
down_layers[layer_number].processor = AttnProcessor2_0() |
|
elif drop_layer[0] == 'm': |
|
mid_layers[layer_number].processor = AttnProcessor2_0() |
|
elif drop_layer[0] == 'u': |
|
up_layers[layer_number].processor = AttnProcessor2_0() |
|
else: |
|
raise ValueError(f"Invalid layer type: {drop_layer[0]}") |
|
except IndexError: |
|
raise ValueError( |
|
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers." |
|
) |
|
elif(self.pag_applied_layers): |
|
drop_full_layers = self.pag_applied_layers |
|
for drop_full_layer in drop_full_layers: |
|
try: |
|
if drop_full_layer == "down": |
|
for down_layer in down_layers: |
|
down_layer.processor = AttnProcessor2_0() |
|
elif drop_full_layer == "mid": |
|
for mid_layer in mid_layers: |
|
mid_layer.processor = AttnProcessor2_0() |
|
elif drop_full_layer == "up": |
|
for up_layer in up_layers: |
|
up_layer.processor = AttnProcessor2_0() |
|
else: |
|
raise ValueError(f"Invalid layer type: {drop_full_layer}") |
|
except IndexError: |
|
raise ValueError( |
|
f"Invalid layer index: {drop_full_layer}. Available layers are: down, mid and up. If you need to specify each layer index, you can use `pag_applied_layers_index`" |
|
) |
|
return StableDiffusionXLPipelineOutput(images=image) |