File size: 2,208 Bytes
c2ce986 b69da7c c2ce986 b69da7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
model-index:
- name: wav2vec2_ljspeech_with_stress
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_ljspeech_with_stress
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0431
- Cer: 0.0073
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.9043 | 1.53 | 500 | 3.0446 | 1.0 |
| 1.1195 | 3.05 | 1000 | 0.1302 | 0.0233 |
| 0.1656 | 4.58 | 1500 | 0.0728 | 0.0149 |
| 0.1136 | 6.11 | 2000 | 0.0581 | 0.0122 |
| 0.0852 | 7.63 | 2500 | 0.0508 | 0.0102 |
| 0.0746 | 9.16 | 3000 | 0.0472 | 0.0093 |
| 0.0646 | 10.69 | 3500 | 0.0443 | 0.0084 |
| 0.0588 | 12.21 | 4000 | 0.0442 | 0.0081 |
| 0.0513 | 13.74 | 4500 | 0.0437 | 0.0077 |
| 0.046 | 15.27 | 5000 | 0.0435 | 0.0075 |
| 0.0446 | 16.79 | 5500 | 0.0430 | 0.0075 |
| 0.0429 | 18.32 | 6000 | 0.0433 | 0.0074 |
| 0.0412 | 19.85 | 6500 | 0.0431 | 0.0072 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|