Upload folder using huggingface_hub
Browse files- checkpoint-500/added_tokens.json +5 -0
- checkpoint-500/config.json +38 -0
- checkpoint-500/generation_config.json +12 -0
- checkpoint-500/latest +1 -0
- checkpoint-500/merges.txt +0 -0
- checkpoint-500/model-00001-of-00002.safetensors +3 -0
- checkpoint-500/model-00002-of-00002.safetensors +3 -0
- checkpoint-500/model.safetensors.index.json +942 -0
- checkpoint-500/rng_state_0.pth +3 -0
- checkpoint-500/rng_state_1.pth +3 -0
- checkpoint-500/rng_state_2.pth +3 -0
- checkpoint-500/rng_state_3.pth +3 -0
- checkpoint-500/rng_state_4.pth +3 -0
- checkpoint-500/rng_state_5.pth +3 -0
- checkpoint-500/rng_state_6.pth +3 -0
- checkpoint-500/rng_state_7.pth +3 -0
- checkpoint-500/scheduler.pt +3 -0
- checkpoint-500/special_tokens_map.json +20 -0
- checkpoint-500/tokenizer.json +0 -0
- checkpoint-500/tokenizer_config.json +44 -0
- checkpoint-500/trainer_state.json +3521 -0
- checkpoint-500/training_args.bin +3 -0
- checkpoint-500/vocab.json +0 -0
- checkpoint-500/zero_to_fp32.py +604 -0
checkpoint-500/added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
checkpoint-500/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Qwen/Qwen1.5-4B-Chat",
|
3 |
+
"architectures": [
|
4 |
+
"LlavaQwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 2560,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 6912,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 21,
|
15 |
+
"mm_hidden_size": 1152,
|
16 |
+
"mm_patch_merge_type": "flat",
|
17 |
+
"mm_projector_lr": null,
|
18 |
+
"mm_projector_type": "mlp2x_gelu",
|
19 |
+
"mm_vision_select_feature": "patch",
|
20 |
+
"mm_vision_select_layer": -2,
|
21 |
+
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
22 |
+
"model_type": "llava-qwen2",
|
23 |
+
"num_attention_heads": 20,
|
24 |
+
"num_hidden_layers": 40,
|
25 |
+
"num_key_value_heads": 20,
|
26 |
+
"pad_image_to_square": true,
|
27 |
+
"rms_norm_eps": 1e-06,
|
28 |
+
"rope_theta": 5000000.0,
|
29 |
+
"sliding_window": 32768,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"tokenizer_model_max_length": 2048,
|
32 |
+
"tokenizer_padding_side": "right",
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.39.0.dev0",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"vocab_size": 151936
|
38 |
+
}
|
checkpoint-500/generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.1,
|
10 |
+
"top_p": 0.8,
|
11 |
+
"transformers_version": "4.39.0.dev0"
|
12 |
+
}
|
checkpoint-500/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step500
|
checkpoint-500/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-500/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d42c9a0d1343fd8613ddca2362db61fede834428f496d48611fa42b8473eaa3
|
3 |
+
size 4989973456
|
checkpoint-500/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44708f4d12cd97337b132613785ab026c27c15d3b6727513081d847746d47964
|
3 |
+
size 3786358064
|
checkpoint-500/model.safetensors.index.json
ADDED
@@ -0,0 +1,942 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 8776205440
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
431 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
433 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
434 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
435 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
441 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
442 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
443 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
444 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
445 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
446 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
448 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
449 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
450 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
451 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
452 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
453 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
454 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
455 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
456 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
457 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
458 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
459 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
460 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
461 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
462 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
463 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
464 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
465 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
466 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
467 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
468 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
469 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
470 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
471 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
472 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
473 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
474 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
475 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
476 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
477 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
478 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
479 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
480 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
481 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
482 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
483 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
484 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
485 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
486 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
487 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
488 |
+
"model.mm_projector.0.bias": "model-00002-of-00002.safetensors",
|
489 |
+
"model.mm_projector.0.weight": "model-00002-of-00002.safetensors",
|
490 |
+
"model.mm_projector.2.bias": "model-00002-of-00002.safetensors",
|
491 |
+
"model.mm_projector.2.weight": "model-00002-of-00002.safetensors",
|
492 |
+
"model.norm.weight": "model-00002-of-00002.safetensors",
|
493 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00002-of-00002.safetensors",
|
494 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00002-of-00002.safetensors",
|
495 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00002-of-00002.safetensors",
|
496 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
497 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
498 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
499 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
500 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
501 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
502 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
503 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
504 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
505 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
506 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
507 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
508 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
509 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
510 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
511 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
512 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
513 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
514 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
515 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
516 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
517 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
518 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
519 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
520 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
521 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
522 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
523 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
524 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
525 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
526 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
527 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
528 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
529 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
530 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
531 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
532 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
533 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
534 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
535 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
536 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
537 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
538 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
539 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
540 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
541 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
542 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
543 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
544 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
545 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
546 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
547 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
548 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
549 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
550 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
551 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
552 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
553 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
554 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
555 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
556 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
557 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
558 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
559 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
560 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
561 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
562 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
563 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
564 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
565 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
566 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
567 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
568 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
569 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
570 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
571 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
572 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
573 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
574 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
575 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
576 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
577 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
578 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
579 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
580 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
581 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
582 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
583 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
584 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
585 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
586 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
587 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
588 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
589 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
590 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
591 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
592 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
593 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
594 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
595 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
596 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
597 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
598 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
599 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
600 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
601 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
602 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
603 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
604 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
605 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
606 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
607 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
608 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
609 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
610 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
611 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
612 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
613 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
614 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
615 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
616 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
617 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
618 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
619 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
620 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
621 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
622 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
623 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
624 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
625 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
626 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
627 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
628 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
629 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
630 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
631 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
632 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
633 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
634 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
635 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
636 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
637 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
638 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
639 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
640 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
641 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
642 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
643 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
644 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
645 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
646 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
647 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
648 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
649 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
650 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
651 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
652 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
653 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
654 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
655 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
656 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
657 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
658 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
659 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
660 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
661 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
662 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
663 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
664 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
665 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
666 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
667 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
668 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
669 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
670 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
671 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
672 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
673 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
674 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
675 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
676 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
677 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
678 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
679 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
680 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
681 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
682 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
683 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
684 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
685 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
686 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
687 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
688 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
689 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
690 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
691 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
692 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
693 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
694 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
695 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
696 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
697 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
698 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
699 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
700 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
701 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
702 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
703 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
704 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
705 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
706 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
707 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
708 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
709 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
710 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
711 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
712 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
713 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
714 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
715 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
716 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
717 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
718 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
719 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
720 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
721 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
722 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
723 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
724 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
725 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
726 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
727 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
728 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
729 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
730 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
731 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
732 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
733 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
734 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
735 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
736 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
737 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
738 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
739 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
740 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
741 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
742 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
743 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
744 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
745 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
746 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
747 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
748 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
749 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
750 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
751 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
752 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
753 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
754 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
755 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
756 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
757 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
758 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
759 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
760 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
761 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
762 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
763 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
764 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
765 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
766 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
767 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
768 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
769 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
770 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
771 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
772 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
773 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
774 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
775 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
776 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
777 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
778 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
779 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
780 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
781 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
782 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
783 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
784 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
785 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
786 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
787 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
788 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
789 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
790 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
791 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
792 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
793 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
794 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
795 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
796 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
797 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
798 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
799 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
800 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
801 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
802 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
803 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
804 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
805 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
806 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
807 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
808 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
809 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
810 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
811 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
812 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
813 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
814 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
815 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
816 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
817 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
818 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
819 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
820 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
821 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
822 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
823 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
824 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
825 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
826 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
827 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
828 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
829 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
830 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
831 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
832 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
833 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
834 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
835 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
836 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
837 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
838 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
839 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
840 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
841 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
842 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
843 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
844 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
845 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
846 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
847 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
848 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
849 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
850 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
851 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
852 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
853 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
854 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
855 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
856 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
857 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
858 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
859 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
860 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
861 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
862 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
863 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
864 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
865 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
866 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
867 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
868 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
869 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
870 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
871 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
872 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
873 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
874 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
875 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
876 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
877 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
878 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
879 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
880 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
881 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
882 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
883 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
884 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
885 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
886 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
887 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
888 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
889 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
890 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
891 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
892 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
893 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
894 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
895 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
896 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
897 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
898 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
899 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
900 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
901 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
902 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
903 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
904 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
905 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
906 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
907 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
908 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
909 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
910 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
911 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
912 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00002-of-00002.safetensors",
|
913 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00002-of-00002.safetensors",
|
914 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00002-of-00002.safetensors",
|
915 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00002-of-00002.safetensors",
|
916 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
917 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
918 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
919 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
920 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
921 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
922 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
923 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
924 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
925 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
926 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
927 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
928 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.in_proj_bias": "model-00002-of-00002.safetensors",
|
929 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.in_proj_weight": "model-00002-of-00002.safetensors",
|
930 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.out_proj.bias": "model-00002-of-00002.safetensors",
|
931 |
+
"model.vision_tower.vision_tower.vision_model.head.attention.out_proj.weight": "model-00002-of-00002.safetensors",
|
932 |
+
"model.vision_tower.vision_tower.vision_model.head.layernorm.bias": "model-00002-of-00002.safetensors",
|
933 |
+
"model.vision_tower.vision_tower.vision_model.head.layernorm.weight": "model-00002-of-00002.safetensors",
|
934 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc1.bias": "model-00002-of-00002.safetensors",
|
935 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
936 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc2.bias": "model-00002-of-00002.safetensors",
|
937 |
+
"model.vision_tower.vision_tower.vision_model.head.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
938 |
+
"model.vision_tower.vision_tower.vision_model.head.probe": "model-00002-of-00002.safetensors",
|
939 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00002-of-00002.safetensors",
|
940 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00002-of-00002.safetensors"
|
941 |
+
}
|
942 |
+
}
|
checkpoint-500/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:349bdce0d7d746fca96725586680f25fcbe87b25649c2f407a9868dd5e3a4df9
|
3 |
+
size 15984
|
checkpoint-500/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed436dfc3c083a2c0f7e071eb5d99ac2c2e4d95be18d4b1d9deadc19ac3e28a9
|
3 |
+
size 15984
|
checkpoint-500/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84f07e5c5bf1c99414ba24cb405aeb8506c21efe99d8211bd74d31e418c44d33
|
3 |
+
size 15984
|
checkpoint-500/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a15560fae09681c4bc9ee053742fc9659fab006ce125f3b1f411e63cc10cfec7
|
3 |
+
size 15984
|
checkpoint-500/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:178e194724cafa7b1fb7d70ea540a3acd5724b87ae900765c2ef5583a45a9453
|
3 |
+
size 15984
|
checkpoint-500/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ccc3fcf9139d4cfdbb927c6fd37fd97d7d2ef7b5aa6c45963be65cfb60b6639
|
3 |
+
size 15984
|
checkpoint-500/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91101508f9bca1ebc0bc4cd93ab62f34dbb722cc9abf588ad771206d72450c84
|
3 |
+
size 15984
|
checkpoint-500/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:095bb04188e7d87cdbcbb73499807e7b094425676f2175b9771b1ab083ab2095
|
3 |
+
size 15984
|
checkpoint-500/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6db28339d778a9fa9e164b59d9e8f9a923a54206cb1879e6f0b06268d9c3978
|
3 |
+
size 1064
|
checkpoint-500/special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
checkpoint-500/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-500/tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if (loop.last and add_generation_prompt) or not loop.last %}{{ '<|im_end|>' + '\n'}}{% endif %}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|im_end|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 2048,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"padding_side": "right",
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
43 |
+
"unk_token": null
|
44 |
+
}
|
checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,3521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.09628345850182939,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"grad_norm": 20.216445284675434,
|
14 |
+
"learning_rate": 1.282051282051282e-07,
|
15 |
+
"loss": 1.9775,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0,
|
20 |
+
"grad_norm": 23.911595589639173,
|
21 |
+
"learning_rate": 2.564102564102564e-07,
|
22 |
+
"loss": 2.1666,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0,
|
27 |
+
"grad_norm": 23.589768673301773,
|
28 |
+
"learning_rate": 3.846153846153847e-07,
|
29 |
+
"loss": 1.9854,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0,
|
34 |
+
"grad_norm": 24.568648529053654,
|
35 |
+
"learning_rate": 5.128205128205128e-07,
|
36 |
+
"loss": 2.2656,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.0,
|
41 |
+
"grad_norm": 24.549288858256404,
|
42 |
+
"learning_rate": 6.41025641025641e-07,
|
43 |
+
"loss": 1.9927,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0,
|
48 |
+
"grad_norm": 23.110487979033767,
|
49 |
+
"learning_rate": 7.692307692307694e-07,
|
50 |
+
"loss": 2.1646,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.0,
|
55 |
+
"grad_norm": 21.9015150661795,
|
56 |
+
"learning_rate": 8.974358974358975e-07,
|
57 |
+
"loss": 2.129,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.0,
|
62 |
+
"grad_norm": 19.501364965637194,
|
63 |
+
"learning_rate": 1.0256410256410257e-06,
|
64 |
+
"loss": 1.9416,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.0,
|
69 |
+
"grad_norm": 17.453575658521874,
|
70 |
+
"learning_rate": 1.153846153846154e-06,
|
71 |
+
"loss": 1.9497,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0,
|
76 |
+
"grad_norm": 15.607773385934923,
|
77 |
+
"learning_rate": 1.282051282051282e-06,
|
78 |
+
"loss": 2.0166,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.0,
|
83 |
+
"grad_norm": 13.464353749675528,
|
84 |
+
"learning_rate": 1.4102564102564104e-06,
|
85 |
+
"loss": 1.8781,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.0,
|
90 |
+
"grad_norm": 13.97360564518581,
|
91 |
+
"learning_rate": 1.5384615384615387e-06,
|
92 |
+
"loss": 1.9095,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.0,
|
97 |
+
"grad_norm": 10.992113441163921,
|
98 |
+
"learning_rate": 1.6666666666666667e-06,
|
99 |
+
"loss": 1.6395,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.0,
|
104 |
+
"grad_norm": 11.552028290409154,
|
105 |
+
"learning_rate": 1.794871794871795e-06,
|
106 |
+
"loss": 1.5434,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.0,
|
111 |
+
"grad_norm": 8.311907698101182,
|
112 |
+
"learning_rate": 1.9230769230769234e-06,
|
113 |
+
"loss": 1.5281,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.0,
|
118 |
+
"grad_norm": 6.678981025513341,
|
119 |
+
"learning_rate": 2.0512820512820513e-06,
|
120 |
+
"loss": 1.4648,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.0,
|
125 |
+
"grad_norm": 1.0588935799454995,
|
126 |
+
"learning_rate": 2.1794871794871797e-06,
|
127 |
+
"loss": 0.7232,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.0,
|
132 |
+
"grad_norm": 4.903466856108649,
|
133 |
+
"learning_rate": 2.307692307692308e-06,
|
134 |
+
"loss": 1.2737,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.0,
|
139 |
+
"grad_norm": 4.685212001248653,
|
140 |
+
"learning_rate": 2.435897435897436e-06,
|
141 |
+
"loss": 1.3402,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.0,
|
146 |
+
"grad_norm": 4.245435062932411,
|
147 |
+
"learning_rate": 2.564102564102564e-06,
|
148 |
+
"loss": 1.3337,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0,
|
153 |
+
"grad_norm": 4.158382292780615,
|
154 |
+
"learning_rate": 2.6923076923076923e-06,
|
155 |
+
"loss": 1.3811,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.0,
|
160 |
+
"grad_norm": 4.186622696017208,
|
161 |
+
"learning_rate": 2.8205128205128207e-06,
|
162 |
+
"loss": 1.2546,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.0,
|
167 |
+
"grad_norm": 3.517891507093355,
|
168 |
+
"learning_rate": 2.948717948717949e-06,
|
169 |
+
"loss": 1.18,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.0,
|
174 |
+
"grad_norm": 3.1001253598950638,
|
175 |
+
"learning_rate": 3.0769230769230774e-06,
|
176 |
+
"loss": 1.3383,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.0,
|
181 |
+
"grad_norm": 1.2465679665413227,
|
182 |
+
"learning_rate": 3.205128205128206e-06,
|
183 |
+
"loss": 0.832,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.01,
|
188 |
+
"grad_norm": 3.0120421636293195,
|
189 |
+
"learning_rate": 3.3333333333333333e-06,
|
190 |
+
"loss": 1.3458,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.01,
|
195 |
+
"grad_norm": 1.4484948949766845,
|
196 |
+
"learning_rate": 3.4615384615384617e-06,
|
197 |
+
"loss": 0.8444,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.01,
|
202 |
+
"grad_norm": 3.1110997732647743,
|
203 |
+
"learning_rate": 3.58974358974359e-06,
|
204 |
+
"loss": 1.2984,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.01,
|
209 |
+
"grad_norm": 2.755277848262445,
|
210 |
+
"learning_rate": 3.7179487179487184e-06,
|
211 |
+
"loss": 1.2309,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.01,
|
216 |
+
"grad_norm": 2.860582982001812,
|
217 |
+
"learning_rate": 3.846153846153847e-06,
|
218 |
+
"loss": 1.2708,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.01,
|
223 |
+
"grad_norm": 2.5897985578473377,
|
224 |
+
"learning_rate": 3.974358974358974e-06,
|
225 |
+
"loss": 1.2035,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.01,
|
230 |
+
"grad_norm": 2.5495914062962792,
|
231 |
+
"learning_rate": 4.102564102564103e-06,
|
232 |
+
"loss": 1.1789,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.01,
|
237 |
+
"grad_norm": 2.389696878446986,
|
238 |
+
"learning_rate": 4.230769230769231e-06,
|
239 |
+
"loss": 1.2519,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.01,
|
244 |
+
"grad_norm": 2.076541587027184,
|
245 |
+
"learning_rate": 4.358974358974359e-06,
|
246 |
+
"loss": 1.1727,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.01,
|
251 |
+
"grad_norm": 1.6797871781763094,
|
252 |
+
"learning_rate": 4.487179487179488e-06,
|
253 |
+
"loss": 0.792,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.01,
|
258 |
+
"grad_norm": 2.1243426876134257,
|
259 |
+
"learning_rate": 4.615384615384616e-06,
|
260 |
+
"loss": 1.1818,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.01,
|
265 |
+
"grad_norm": 2.299174657545576,
|
266 |
+
"learning_rate": 4.743589743589744e-06,
|
267 |
+
"loss": 1.2307,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.01,
|
272 |
+
"grad_norm": 2.0371458205650415,
|
273 |
+
"learning_rate": 4.871794871794872e-06,
|
274 |
+
"loss": 1.1005,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.01,
|
279 |
+
"grad_norm": 2.2455222878601098,
|
280 |
+
"learning_rate": 5e-06,
|
281 |
+
"loss": 1.1864,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.01,
|
286 |
+
"grad_norm": 2.1266583614163515,
|
287 |
+
"learning_rate": 5.128205128205128e-06,
|
288 |
+
"loss": 1.15,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.01,
|
293 |
+
"grad_norm": 2.089620655737586,
|
294 |
+
"learning_rate": 5.256410256410257e-06,
|
295 |
+
"loss": 1.1877,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.01,
|
300 |
+
"grad_norm": 2.197147361182619,
|
301 |
+
"learning_rate": 5.384615384615385e-06,
|
302 |
+
"loss": 1.1843,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.01,
|
307 |
+
"grad_norm": 1.1442985310608946,
|
308 |
+
"learning_rate": 5.512820512820514e-06,
|
309 |
+
"loss": 0.8406,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.01,
|
314 |
+
"grad_norm": 2.2343649074177634,
|
315 |
+
"learning_rate": 5.641025641025641e-06,
|
316 |
+
"loss": 1.2641,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.01,
|
321 |
+
"grad_norm": 2.2274293780592904,
|
322 |
+
"learning_rate": 5.769230769230769e-06,
|
323 |
+
"loss": 1.2005,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.01,
|
328 |
+
"grad_norm": 2.1702020802705553,
|
329 |
+
"learning_rate": 5.897435897435898e-06,
|
330 |
+
"loss": 1.2,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.01,
|
335 |
+
"grad_norm": 2.2728644356062087,
|
336 |
+
"learning_rate": 6.025641025641026e-06,
|
337 |
+
"loss": 1.1639,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.01,
|
342 |
+
"grad_norm": 2.296917779568054,
|
343 |
+
"learning_rate": 6.153846153846155e-06,
|
344 |
+
"loss": 1.1447,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.01,
|
349 |
+
"grad_norm": 2.1847920179158975,
|
350 |
+
"learning_rate": 6.282051282051282e-06,
|
351 |
+
"loss": 1.1049,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.01,
|
356 |
+
"grad_norm": 2.305602717661454,
|
357 |
+
"learning_rate": 6.410256410256412e-06,
|
358 |
+
"loss": 1.1454,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.01,
|
363 |
+
"grad_norm": 1.8163614577368297,
|
364 |
+
"learning_rate": 6.538461538461539e-06,
|
365 |
+
"loss": 1.1534,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.01,
|
370 |
+
"grad_norm": 2.0156958103382907,
|
371 |
+
"learning_rate": 6.666666666666667e-06,
|
372 |
+
"loss": 1.1014,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.01,
|
377 |
+
"grad_norm": 2.2061600271142927,
|
378 |
+
"learning_rate": 6.794871794871796e-06,
|
379 |
+
"loss": 1.1111,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.01,
|
384 |
+
"grad_norm": 2.0514290811875346,
|
385 |
+
"learning_rate": 6.923076923076923e-06,
|
386 |
+
"loss": 1.2195,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.01,
|
391 |
+
"grad_norm": 2.009350847624063,
|
392 |
+
"learning_rate": 7.051282051282053e-06,
|
393 |
+
"loss": 1.1672,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.01,
|
398 |
+
"grad_norm": 1.9383085189275544,
|
399 |
+
"learning_rate": 7.17948717948718e-06,
|
400 |
+
"loss": 1.1329,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.01,
|
405 |
+
"grad_norm": 2.231367175822086,
|
406 |
+
"learning_rate": 7.307692307692308e-06,
|
407 |
+
"loss": 1.1168,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.01,
|
412 |
+
"grad_norm": 2.0008003220100643,
|
413 |
+
"learning_rate": 7.435897435897437e-06,
|
414 |
+
"loss": 1.2286,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.01,
|
419 |
+
"grad_norm": 1.8980157371763204,
|
420 |
+
"learning_rate": 7.564102564102564e-06,
|
421 |
+
"loss": 1.0885,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.01,
|
426 |
+
"grad_norm": 1.9742084904113024,
|
427 |
+
"learning_rate": 7.692307692307694e-06,
|
428 |
+
"loss": 1.1383,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.01,
|
433 |
+
"grad_norm": 2.130005401042239,
|
434 |
+
"learning_rate": 7.820512820512822e-06,
|
435 |
+
"loss": 1.1859,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.01,
|
440 |
+
"grad_norm": 1.986055300283839,
|
441 |
+
"learning_rate": 7.948717948717949e-06,
|
442 |
+
"loss": 1.1223,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.01,
|
447 |
+
"grad_norm": 1.901481096038548,
|
448 |
+
"learning_rate": 8.076923076923077e-06,
|
449 |
+
"loss": 1.0932,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.01,
|
454 |
+
"grad_norm": 2.125815394626458,
|
455 |
+
"learning_rate": 8.205128205128205e-06,
|
456 |
+
"loss": 1.2282,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.01,
|
461 |
+
"grad_norm": 1.9414092406206,
|
462 |
+
"learning_rate": 8.333333333333334e-06,
|
463 |
+
"loss": 1.1273,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.01,
|
468 |
+
"grad_norm": 1.9746610829599591,
|
469 |
+
"learning_rate": 8.461538461538462e-06,
|
470 |
+
"loss": 1.048,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.01,
|
475 |
+
"grad_norm": 2.154415501683974,
|
476 |
+
"learning_rate": 8.58974358974359e-06,
|
477 |
+
"loss": 1.0115,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.01,
|
482 |
+
"grad_norm": 1.868695894296507,
|
483 |
+
"learning_rate": 8.717948717948719e-06,
|
484 |
+
"loss": 1.1381,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.01,
|
489 |
+
"grad_norm": 1.8811818709807824,
|
490 |
+
"learning_rate": 8.846153846153847e-06,
|
491 |
+
"loss": 1.1031,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.01,
|
496 |
+
"grad_norm": 2.3006046265407827,
|
497 |
+
"learning_rate": 8.974358974358976e-06,
|
498 |
+
"loss": 1.1062,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.01,
|
503 |
+
"grad_norm": 2.1699669644056137,
|
504 |
+
"learning_rate": 9.102564102564104e-06,
|
505 |
+
"loss": 1.1372,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.01,
|
510 |
+
"grad_norm": 1.8731108123220086,
|
511 |
+
"learning_rate": 9.230769230769232e-06,
|
512 |
+
"loss": 1.043,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.01,
|
517 |
+
"grad_norm": 2.1143191194853337,
|
518 |
+
"learning_rate": 9.358974358974359e-06,
|
519 |
+
"loss": 1.2095,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.01,
|
524 |
+
"grad_norm": 1.9506052984256566,
|
525 |
+
"learning_rate": 9.487179487179487e-06,
|
526 |
+
"loss": 1.1677,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.01,
|
531 |
+
"grad_norm": 2.004755199707491,
|
532 |
+
"learning_rate": 9.615384615384616e-06,
|
533 |
+
"loss": 1.1288,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.01,
|
538 |
+
"grad_norm": 2.2712419994719104,
|
539 |
+
"learning_rate": 9.743589743589744e-06,
|
540 |
+
"loss": 1.1489,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.01,
|
545 |
+
"grad_norm": 1.9915382414879983,
|
546 |
+
"learning_rate": 9.871794871794872e-06,
|
547 |
+
"loss": 1.1356,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.02,
|
552 |
+
"grad_norm": 1.8655506688742343,
|
553 |
+
"learning_rate": 1e-05,
|
554 |
+
"loss": 1.0524,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.02,
|
559 |
+
"grad_norm": 2.1482093297445575,
|
560 |
+
"learning_rate": 1.012820512820513e-05,
|
561 |
+
"loss": 0.9386,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.02,
|
566 |
+
"grad_norm": 1.9215954323448314,
|
567 |
+
"learning_rate": 1.0256410256410256e-05,
|
568 |
+
"loss": 1.1801,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.02,
|
573 |
+
"grad_norm": 1.9081067065165245,
|
574 |
+
"learning_rate": 1.0384615384615386e-05,
|
575 |
+
"loss": 1.0638,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.02,
|
580 |
+
"grad_norm": 1.9407275778581317,
|
581 |
+
"learning_rate": 1.0512820512820514e-05,
|
582 |
+
"loss": 1.1074,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.02,
|
587 |
+
"grad_norm": 2.025638661080253,
|
588 |
+
"learning_rate": 1.0641025641025643e-05,
|
589 |
+
"loss": 1.0776,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.02,
|
594 |
+
"grad_norm": 1.919914713517629,
|
595 |
+
"learning_rate": 1.076923076923077e-05,
|
596 |
+
"loss": 1.0189,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.02,
|
601 |
+
"grad_norm": 2.1903909968624977,
|
602 |
+
"learning_rate": 1.0897435897435898e-05,
|
603 |
+
"loss": 1.1085,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.02,
|
608 |
+
"grad_norm": 2.17664798755956,
|
609 |
+
"learning_rate": 1.1025641025641028e-05,
|
610 |
+
"loss": 1.0529,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.02,
|
615 |
+
"grad_norm": 2.113038538305221,
|
616 |
+
"learning_rate": 1.1153846153846154e-05,
|
617 |
+
"loss": 1.1169,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.02,
|
622 |
+
"grad_norm": 2.0486185050480894,
|
623 |
+
"learning_rate": 1.1282051282051283e-05,
|
624 |
+
"loss": 1.1889,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.02,
|
629 |
+
"grad_norm": 2.045888088194733,
|
630 |
+
"learning_rate": 1.1410256410256411e-05,
|
631 |
+
"loss": 1.1538,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.02,
|
636 |
+
"grad_norm": 1.7806490104735406,
|
637 |
+
"learning_rate": 1.1538461538461538e-05,
|
638 |
+
"loss": 1.0914,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.02,
|
643 |
+
"grad_norm": 2.1971405645771527,
|
644 |
+
"learning_rate": 1.1666666666666668e-05,
|
645 |
+
"loss": 1.048,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.02,
|
650 |
+
"grad_norm": 2.002750992348389,
|
651 |
+
"learning_rate": 1.1794871794871796e-05,
|
652 |
+
"loss": 1.0975,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.02,
|
657 |
+
"grad_norm": 2.187960188699195,
|
658 |
+
"learning_rate": 1.1923076923076925e-05,
|
659 |
+
"loss": 1.0906,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.02,
|
664 |
+
"grad_norm": 2.0174873060151857,
|
665 |
+
"learning_rate": 1.2051282051282051e-05,
|
666 |
+
"loss": 1.0992,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.02,
|
671 |
+
"grad_norm": 2.0443319007612852,
|
672 |
+
"learning_rate": 1.217948717948718e-05,
|
673 |
+
"loss": 1.082,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.02,
|
678 |
+
"grad_norm": 1.2748628196945109,
|
679 |
+
"learning_rate": 1.230769230769231e-05,
|
680 |
+
"loss": 0.7718,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.02,
|
685 |
+
"grad_norm": 1.896137442216524,
|
686 |
+
"learning_rate": 1.2435897435897436e-05,
|
687 |
+
"loss": 1.1549,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.02,
|
692 |
+
"grad_norm": 1.95843096706086,
|
693 |
+
"learning_rate": 1.2564102564102565e-05,
|
694 |
+
"loss": 1.128,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.02,
|
699 |
+
"grad_norm": 2.0686480210411657,
|
700 |
+
"learning_rate": 1.2692307692307693e-05,
|
701 |
+
"loss": 1.1249,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.02,
|
706 |
+
"grad_norm": 1.9404669088500452,
|
707 |
+
"learning_rate": 1.2820512820512823e-05,
|
708 |
+
"loss": 1.115,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.02,
|
713 |
+
"grad_norm": 1.8653249453155127,
|
714 |
+
"learning_rate": 1.294871794871795e-05,
|
715 |
+
"loss": 1.1051,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.02,
|
720 |
+
"grad_norm": 2.10107543117975,
|
721 |
+
"learning_rate": 1.3076923076923078e-05,
|
722 |
+
"loss": 1.0875,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.02,
|
727 |
+
"grad_norm": 1.8747249569118767,
|
728 |
+
"learning_rate": 1.3205128205128207e-05,
|
729 |
+
"loss": 1.0451,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.02,
|
734 |
+
"grad_norm": 1.9850084346269088,
|
735 |
+
"learning_rate": 1.3333333333333333e-05,
|
736 |
+
"loss": 1.0689,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.02,
|
741 |
+
"grad_norm": 2.049123340018695,
|
742 |
+
"learning_rate": 1.3461538461538463e-05,
|
743 |
+
"loss": 1.0905,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.02,
|
748 |
+
"grad_norm": 2.1264307975036925,
|
749 |
+
"learning_rate": 1.3589743589743592e-05,
|
750 |
+
"loss": 1.1224,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.02,
|
755 |
+
"grad_norm": 2.0502742046299907,
|
756 |
+
"learning_rate": 1.3717948717948718e-05,
|
757 |
+
"loss": 1.0915,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.02,
|
762 |
+
"grad_norm": 1.8303440971792886,
|
763 |
+
"learning_rate": 1.3846153846153847e-05,
|
764 |
+
"loss": 1.0949,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.02,
|
769 |
+
"grad_norm": 2.2313836077753413,
|
770 |
+
"learning_rate": 1.3974358974358975e-05,
|
771 |
+
"loss": 1.0429,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.02,
|
776 |
+
"grad_norm": 1.8919532863183655,
|
777 |
+
"learning_rate": 1.4102564102564105e-05,
|
778 |
+
"loss": 1.0763,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.02,
|
783 |
+
"grad_norm": 2.0704343058304526,
|
784 |
+
"learning_rate": 1.4230769230769232e-05,
|
785 |
+
"loss": 1.1657,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.02,
|
790 |
+
"grad_norm": 2.430724552963001,
|
791 |
+
"learning_rate": 1.435897435897436e-05,
|
792 |
+
"loss": 1.0815,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.02,
|
797 |
+
"grad_norm": 1.1085720824994245,
|
798 |
+
"learning_rate": 1.4487179487179489e-05,
|
799 |
+
"loss": 0.866,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.02,
|
804 |
+
"grad_norm": 1.8279405733949405,
|
805 |
+
"learning_rate": 1.4615384615384615e-05,
|
806 |
+
"loss": 1.0434,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.02,
|
811 |
+
"grad_norm": 1.9381964085003,
|
812 |
+
"learning_rate": 1.4743589743589745e-05,
|
813 |
+
"loss": 1.0764,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.02,
|
818 |
+
"grad_norm": 0.9487925657079459,
|
819 |
+
"learning_rate": 1.4871794871794874e-05,
|
820 |
+
"loss": 0.7605,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.02,
|
825 |
+
"grad_norm": 2.1860059019926847,
|
826 |
+
"learning_rate": 1.5000000000000002e-05,
|
827 |
+
"loss": 1.0553,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.02,
|
832 |
+
"grad_norm": 1.9458206802695046,
|
833 |
+
"learning_rate": 1.5128205128205129e-05,
|
834 |
+
"loss": 1.048,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.02,
|
839 |
+
"grad_norm": 1.835280245148161,
|
840 |
+
"learning_rate": 1.5256410256410257e-05,
|
841 |
+
"loss": 1.055,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.02,
|
846 |
+
"grad_norm": 2.0496294448787333,
|
847 |
+
"learning_rate": 1.5384615384615387e-05,
|
848 |
+
"loss": 1.1847,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.02,
|
853 |
+
"grad_norm": 2.218142247887536,
|
854 |
+
"learning_rate": 1.5512820512820516e-05,
|
855 |
+
"loss": 1.0944,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.02,
|
860 |
+
"grad_norm": 2.4654880331995055,
|
861 |
+
"learning_rate": 1.5641025641025644e-05,
|
862 |
+
"loss": 1.1229,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.02,
|
867 |
+
"grad_norm": 1.9292976768956316,
|
868 |
+
"learning_rate": 1.576923076923077e-05,
|
869 |
+
"loss": 1.0633,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.02,
|
874 |
+
"grad_norm": 1.9404361588446972,
|
875 |
+
"learning_rate": 1.5897435897435897e-05,
|
876 |
+
"loss": 1.0854,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.02,
|
881 |
+
"grad_norm": 1.9362855000410057,
|
882 |
+
"learning_rate": 1.602564102564103e-05,
|
883 |
+
"loss": 1.0061,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.02,
|
888 |
+
"grad_norm": 2.083318365558794,
|
889 |
+
"learning_rate": 1.6153846153846154e-05,
|
890 |
+
"loss": 1.0612,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.02,
|
895 |
+
"grad_norm": 2.122373700349859,
|
896 |
+
"learning_rate": 1.6282051282051282e-05,
|
897 |
+
"loss": 0.9871,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.02,
|
902 |
+
"grad_norm": 2.359431021405571,
|
903 |
+
"learning_rate": 1.641025641025641e-05,
|
904 |
+
"loss": 1.0635,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.02,
|
909 |
+
"grad_norm": 1.0429268801216616,
|
910 |
+
"learning_rate": 1.653846153846154e-05,
|
911 |
+
"loss": 0.8406,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.03,
|
916 |
+
"grad_norm": 2.394181875364715,
|
917 |
+
"learning_rate": 1.6666666666666667e-05,
|
918 |
+
"loss": 1.0533,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.03,
|
923 |
+
"grad_norm": 2.0279839342385624,
|
924 |
+
"learning_rate": 1.6794871794871796e-05,
|
925 |
+
"loss": 1.1405,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.03,
|
930 |
+
"grad_norm": 2.133411698576336,
|
931 |
+
"learning_rate": 1.6923076923076924e-05,
|
932 |
+
"loss": 1.1123,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.03,
|
937 |
+
"grad_norm": 2.0961335815701654,
|
938 |
+
"learning_rate": 1.7051282051282053e-05,
|
939 |
+
"loss": 1.1525,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.03,
|
944 |
+
"grad_norm": 2.0054012186334265,
|
945 |
+
"learning_rate": 1.717948717948718e-05,
|
946 |
+
"loss": 1.0072,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.03,
|
951 |
+
"grad_norm": 1.9954089428486153,
|
952 |
+
"learning_rate": 1.730769230769231e-05,
|
953 |
+
"loss": 0.9954,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.03,
|
958 |
+
"grad_norm": 1.9266633957752657,
|
959 |
+
"learning_rate": 1.7435897435897438e-05,
|
960 |
+
"loss": 1.0307,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.03,
|
965 |
+
"grad_norm": 2.0235377885233734,
|
966 |
+
"learning_rate": 1.7564102564102566e-05,
|
967 |
+
"loss": 1.0939,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.03,
|
972 |
+
"grad_norm": 2.0175192551390526,
|
973 |
+
"learning_rate": 1.7692307692307694e-05,
|
974 |
+
"loss": 1.0717,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.03,
|
979 |
+
"grad_norm": 1.0342136013306582,
|
980 |
+
"learning_rate": 1.7820512820512823e-05,
|
981 |
+
"loss": 0.808,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.03,
|
986 |
+
"grad_norm": 2.428830129959296,
|
987 |
+
"learning_rate": 1.794871794871795e-05,
|
988 |
+
"loss": 1.082,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.03,
|
993 |
+
"grad_norm": 1.9642876987686577,
|
994 |
+
"learning_rate": 1.807692307692308e-05,
|
995 |
+
"loss": 1.1122,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.03,
|
1000 |
+
"grad_norm": 2.027656601747293,
|
1001 |
+
"learning_rate": 1.8205128205128208e-05,
|
1002 |
+
"loss": 1.0719,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.03,
|
1007 |
+
"grad_norm": 2.183894708322355,
|
1008 |
+
"learning_rate": 1.8333333333333333e-05,
|
1009 |
+
"loss": 1.1253,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.03,
|
1014 |
+
"grad_norm": 2.062043365070345,
|
1015 |
+
"learning_rate": 1.8461538461538465e-05,
|
1016 |
+
"loss": 1.0173,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.03,
|
1021 |
+
"grad_norm": 2.033473969787848,
|
1022 |
+
"learning_rate": 1.8589743589743593e-05,
|
1023 |
+
"loss": 1.1215,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.03,
|
1028 |
+
"grad_norm": 2.062919227268133,
|
1029 |
+
"learning_rate": 1.8717948717948718e-05,
|
1030 |
+
"loss": 0.9471,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.03,
|
1035 |
+
"grad_norm": 2.070479749634218,
|
1036 |
+
"learning_rate": 1.8846153846153846e-05,
|
1037 |
+
"loss": 1.1518,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.03,
|
1042 |
+
"grad_norm": 1.9754065164309047,
|
1043 |
+
"learning_rate": 1.8974358974358975e-05,
|
1044 |
+
"loss": 1.0442,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.03,
|
1049 |
+
"grad_norm": 2.13339324208887,
|
1050 |
+
"learning_rate": 1.9102564102564106e-05,
|
1051 |
+
"loss": 1.0118,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.03,
|
1056 |
+
"grad_norm": 2.369137183205933,
|
1057 |
+
"learning_rate": 1.923076923076923e-05,
|
1058 |
+
"loss": 1.092,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.03,
|
1063 |
+
"grad_norm": 2.1638382502455435,
|
1064 |
+
"learning_rate": 1.935897435897436e-05,
|
1065 |
+
"loss": 0.9977,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.03,
|
1070 |
+
"grad_norm": 2.1783663043501296,
|
1071 |
+
"learning_rate": 1.9487179487179488e-05,
|
1072 |
+
"loss": 1.0939,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.03,
|
1077 |
+
"grad_norm": 1.9497922494089797,
|
1078 |
+
"learning_rate": 1.9615384615384617e-05,
|
1079 |
+
"loss": 1.0152,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.03,
|
1084 |
+
"grad_norm": 2.0547723801429747,
|
1085 |
+
"learning_rate": 1.9743589743589745e-05,
|
1086 |
+
"loss": 1.0223,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.03,
|
1091 |
+
"grad_norm": 2.070242647096933,
|
1092 |
+
"learning_rate": 1.9871794871794873e-05,
|
1093 |
+
"loss": 0.9549,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.03,
|
1098 |
+
"grad_norm": 1.9301029883856002,
|
1099 |
+
"learning_rate": 2e-05,
|
1100 |
+
"loss": 1.0594,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.03,
|
1105 |
+
"grad_norm": 2.1096159037163598,
|
1106 |
+
"learning_rate": 1.9999998054972106e-05,
|
1107 |
+
"loss": 1.0369,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.03,
|
1112 |
+
"grad_norm": 2.1245553998838536,
|
1113 |
+
"learning_rate": 1.9999992219889184e-05,
|
1114 |
+
"loss": 0.9525,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.03,
|
1119 |
+
"grad_norm": 2.131488635617247,
|
1120 |
+
"learning_rate": 1.99999824947535e-05,
|
1121 |
+
"loss": 1.0323,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.03,
|
1126 |
+
"grad_norm": 2.363965004377438,
|
1127 |
+
"learning_rate": 1.9999968879568835e-05,
|
1128 |
+
"loss": 1.0856,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.03,
|
1133 |
+
"grad_norm": 2.0585329850283522,
|
1134 |
+
"learning_rate": 1.9999951374340493e-05,
|
1135 |
+
"loss": 1.0892,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.03,
|
1140 |
+
"grad_norm": 1.9750564938392907,
|
1141 |
+
"learning_rate": 1.9999929979075278e-05,
|
1142 |
+
"loss": 1.0452,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.03,
|
1147 |
+
"grad_norm": 2.141328684995138,
|
1148 |
+
"learning_rate": 1.999990469378151e-05,
|
1149 |
+
"loss": 1.1101,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.03,
|
1154 |
+
"grad_norm": 1.031433061724888,
|
1155 |
+
"learning_rate": 1.9999875518469033e-05,
|
1156 |
+
"loss": 0.799,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.03,
|
1161 |
+
"grad_norm": 2.4065812716730095,
|
1162 |
+
"learning_rate": 1.9999842453149192e-05,
|
1163 |
+
"loss": 1.0711,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.03,
|
1168 |
+
"grad_norm": 2.202667832906497,
|
1169 |
+
"learning_rate": 1.999980549783485e-05,
|
1170 |
+
"loss": 0.994,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.03,
|
1175 |
+
"grad_norm": 2.129957736688869,
|
1176 |
+
"learning_rate": 1.9999764652540382e-05,
|
1177 |
+
"loss": 1.0424,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.03,
|
1182 |
+
"grad_norm": 2.32808847121314,
|
1183 |
+
"learning_rate": 1.9999719917281682e-05,
|
1184 |
+
"loss": 1.1104,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.03,
|
1189 |
+
"grad_norm": 2.402682209687328,
|
1190 |
+
"learning_rate": 1.9999671292076145e-05,
|
1191 |
+
"loss": 1.1413,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.03,
|
1196 |
+
"grad_norm": 2.1985356868714634,
|
1197 |
+
"learning_rate": 1.9999618776942692e-05,
|
1198 |
+
"loss": 1.0147,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.03,
|
1203 |
+
"grad_norm": 2.174198937460871,
|
1204 |
+
"learning_rate": 1.999956237190175e-05,
|
1205 |
+
"loss": 1.0795,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.03,
|
1210 |
+
"grad_norm": 2.5202206051237606,
|
1211 |
+
"learning_rate": 1.9999502076975257e-05,
|
1212 |
+
"loss": 0.9901,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.03,
|
1217 |
+
"grad_norm": 2.1957807846109967,
|
1218 |
+
"learning_rate": 1.9999437892186673e-05,
|
1219 |
+
"loss": 0.9667,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.03,
|
1224 |
+
"grad_norm": 1.9569728406033189,
|
1225 |
+
"learning_rate": 1.9999369817560967e-05,
|
1226 |
+
"loss": 1.0522,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.03,
|
1231 |
+
"grad_norm": 2.245962863895941,
|
1232 |
+
"learning_rate": 1.9999297853124614e-05,
|
1233 |
+
"loss": 1.0186,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.03,
|
1238 |
+
"grad_norm": 2.413279476262106,
|
1239 |
+
"learning_rate": 1.9999221998905613e-05,
|
1240 |
+
"loss": 1.0631,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.03,
|
1245 |
+
"grad_norm": 2.076972357794391,
|
1246 |
+
"learning_rate": 1.9999142254933476e-05,
|
1247 |
+
"loss": 1.0691,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.03,
|
1252 |
+
"grad_norm": 1.972083747779467,
|
1253 |
+
"learning_rate": 1.9999058621239217e-05,
|
1254 |
+
"loss": 1.0699,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.03,
|
1259 |
+
"grad_norm": 2.1755848177736334,
|
1260 |
+
"learning_rate": 1.9998971097855372e-05,
|
1261 |
+
"loss": 1.1303,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.03,
|
1266 |
+
"grad_norm": 1.9839915727644544,
|
1267 |
+
"learning_rate": 1.999887968481599e-05,
|
1268 |
+
"loss": 1.0598,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.03,
|
1273 |
+
"grad_norm": 2.0373868712914938,
|
1274 |
+
"learning_rate": 1.9998784382156622e-05,
|
1275 |
+
"loss": 1.0762,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.04,
|
1280 |
+
"grad_norm": 2.0029728344755298,
|
1281 |
+
"learning_rate": 1.9998685189914356e-05,
|
1282 |
+
"loss": 1.1297,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.04,
|
1287 |
+
"grad_norm": 1.9387023208997487,
|
1288 |
+
"learning_rate": 1.999858210812777e-05,
|
1289 |
+
"loss": 0.9651,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.04,
|
1294 |
+
"grad_norm": 2.1732843858578414,
|
1295 |
+
"learning_rate": 1.9998475136836966e-05,
|
1296 |
+
"loss": 1.0479,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.04,
|
1301 |
+
"grad_norm": 1.954541614593413,
|
1302 |
+
"learning_rate": 1.999836427608355e-05,
|
1303 |
+
"loss": 0.9924,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.04,
|
1308 |
+
"grad_norm": 1.9489826509232497,
|
1309 |
+
"learning_rate": 1.9998249525910656e-05,
|
1310 |
+
"loss": 1.0869,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.04,
|
1315 |
+
"grad_norm": 1.762474252467788,
|
1316 |
+
"learning_rate": 1.999813088636292e-05,
|
1317 |
+
"loss": 0.9219,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.04,
|
1322 |
+
"grad_norm": 2.0627539245716164,
|
1323 |
+
"learning_rate": 1.999800835748649e-05,
|
1324 |
+
"loss": 1.0559,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.04,
|
1329 |
+
"grad_norm": 2.137164696299313,
|
1330 |
+
"learning_rate": 1.9997881939329034e-05,
|
1331 |
+
"loss": 1.0711,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.04,
|
1336 |
+
"grad_norm": 2.102050244558165,
|
1337 |
+
"learning_rate": 1.9997751631939724e-05,
|
1338 |
+
"loss": 1.0547,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.04,
|
1343 |
+
"grad_norm": 1.9560280671941297,
|
1344 |
+
"learning_rate": 1.999761743536926e-05,
|
1345 |
+
"loss": 1.0285,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.04,
|
1350 |
+
"grad_norm": 2.2056335755059853,
|
1351 |
+
"learning_rate": 1.9997479349669836e-05,
|
1352 |
+
"loss": 1.039,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.04,
|
1357 |
+
"grad_norm": 1.857852624351155,
|
1358 |
+
"learning_rate": 1.999733737489517e-05,
|
1359 |
+
"loss": 1.0525,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.04,
|
1364 |
+
"grad_norm": 2.1149817844051846,
|
1365 |
+
"learning_rate": 1.9997191511100498e-05,
|
1366 |
+
"loss": 1.1631,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.04,
|
1371 |
+
"grad_norm": 2.1742104034580874,
|
1372 |
+
"learning_rate": 1.9997041758342554e-05,
|
1373 |
+
"loss": 1.0704,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.04,
|
1378 |
+
"grad_norm": 1.92170752202666,
|
1379 |
+
"learning_rate": 1.9996888116679597e-05,
|
1380 |
+
"loss": 1.0977,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.04,
|
1385 |
+
"grad_norm": 1.8760103416157878,
|
1386 |
+
"learning_rate": 1.999673058617139e-05,
|
1387 |
+
"loss": 1.0593,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.04,
|
1392 |
+
"grad_norm": 2.239018605486002,
|
1393 |
+
"learning_rate": 1.9996569166879215e-05,
|
1394 |
+
"loss": 1.1451,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.04,
|
1399 |
+
"grad_norm": 1.9680194040337873,
|
1400 |
+
"learning_rate": 1.9996403858865867e-05,
|
1401 |
+
"loss": 1.1002,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.04,
|
1406 |
+
"grad_norm": 1.8952136254504348,
|
1407 |
+
"learning_rate": 1.9996234662195653e-05,
|
1408 |
+
"loss": 1.13,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.04,
|
1413 |
+
"grad_norm": 1.7805244417146453,
|
1414 |
+
"learning_rate": 1.9996061576934388e-05,
|
1415 |
+
"loss": 1.088,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.04,
|
1420 |
+
"grad_norm": 1.8466727506858036,
|
1421 |
+
"learning_rate": 1.9995884603149403e-05,
|
1422 |
+
"loss": 1.0727,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.04,
|
1427 |
+
"grad_norm": 1.8297374299414597,
|
1428 |
+
"learning_rate": 1.9995703740909542e-05,
|
1429 |
+
"loss": 0.9719,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.04,
|
1434 |
+
"grad_norm": 1.8430958263907924,
|
1435 |
+
"learning_rate": 1.9995518990285166e-05,
|
1436 |
+
"loss": 1.0023,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.04,
|
1441 |
+
"grad_norm": 2.0008787877943846,
|
1442 |
+
"learning_rate": 1.9995330351348135e-05,
|
1443 |
+
"loss": 1.1435,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.04,
|
1448 |
+
"grad_norm": 1.767812451189823,
|
1449 |
+
"learning_rate": 1.999513782417184e-05,
|
1450 |
+
"loss": 0.988,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.04,
|
1455 |
+
"grad_norm": 1.9499593819305316,
|
1456 |
+
"learning_rate": 1.999494140883117e-05,
|
1457 |
+
"loss": 1.0819,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.04,
|
1462 |
+
"grad_norm": 1.9273733720896404,
|
1463 |
+
"learning_rate": 1.9994741105402533e-05,
|
1464 |
+
"loss": 0.9283,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.04,
|
1469 |
+
"grad_norm": 2.045214086540413,
|
1470 |
+
"learning_rate": 1.9994536913963852e-05,
|
1471 |
+
"loss": 1.0441,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.04,
|
1476 |
+
"grad_norm": 1.9323194027489348,
|
1477 |
+
"learning_rate": 1.999432883459455e-05,
|
1478 |
+
"loss": 1.0739,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.04,
|
1483 |
+
"grad_norm": 1.78702758065982,
|
1484 |
+
"learning_rate": 1.9994116867375574e-05,
|
1485 |
+
"loss": 1.0648,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.04,
|
1490 |
+
"grad_norm": 1.999325292321686,
|
1491 |
+
"learning_rate": 1.9993901012389386e-05,
|
1492 |
+
"loss": 1.0197,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.04,
|
1497 |
+
"grad_norm": 1.9750895391330754,
|
1498 |
+
"learning_rate": 1.999368126971995e-05,
|
1499 |
+
"loss": 1.0378,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.04,
|
1504 |
+
"grad_norm": 2.0645995523227865,
|
1505 |
+
"learning_rate": 1.9993457639452748e-05,
|
1506 |
+
"loss": 1.0636,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.04,
|
1511 |
+
"grad_norm": 2.0348647174788024,
|
1512 |
+
"learning_rate": 1.999323012167477e-05,
|
1513 |
+
"loss": 1.0233,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.04,
|
1518 |
+
"grad_norm": 1.955566109346601,
|
1519 |
+
"learning_rate": 1.999299871647453e-05,
|
1520 |
+
"loss": 1.1114,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.04,
|
1525 |
+
"grad_norm": 2.0108878112553326,
|
1526 |
+
"learning_rate": 1.9992763423942038e-05,
|
1527 |
+
"loss": 1.0761,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.04,
|
1532 |
+
"grad_norm": 1.9661856223780965,
|
1533 |
+
"learning_rate": 1.999252424416883e-05,
|
1534 |
+
"loss": 1.1253,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.04,
|
1539 |
+
"grad_norm": 2.1696126303119874,
|
1540 |
+
"learning_rate": 1.9992281177247942e-05,
|
1541 |
+
"loss": 1.0375,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.04,
|
1546 |
+
"grad_norm": 1.2041115439000005,
|
1547 |
+
"learning_rate": 1.999203422327393e-05,
|
1548 |
+
"loss": 0.8076,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.04,
|
1553 |
+
"grad_norm": 1.9028998749132995,
|
1554 |
+
"learning_rate": 1.9991783382342867e-05,
|
1555 |
+
"loss": 1.0468,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.04,
|
1560 |
+
"grad_norm": 2.2722564344114153,
|
1561 |
+
"learning_rate": 1.9991528654552326e-05,
|
1562 |
+
"loss": 1.066,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.04,
|
1567 |
+
"grad_norm": 2.1410050185723164,
|
1568 |
+
"learning_rate": 1.9991270040001396e-05,
|
1569 |
+
"loss": 1.0753,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.04,
|
1574 |
+
"grad_norm": 2.0921277876178137,
|
1575 |
+
"learning_rate": 1.9991007538790686e-05,
|
1576 |
+
"loss": 1.0768,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.04,
|
1581 |
+
"grad_norm": 2.0882235349073617,
|
1582 |
+
"learning_rate": 1.9990741151022302e-05,
|
1583 |
+
"loss": 1.0978,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.04,
|
1588 |
+
"grad_norm": 1.9414030643468547,
|
1589 |
+
"learning_rate": 1.9990470876799876e-05,
|
1590 |
+
"loss": 1.002,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.04,
|
1595 |
+
"grad_norm": 2.17093585650916,
|
1596 |
+
"learning_rate": 1.9990196716228546e-05,
|
1597 |
+
"loss": 1.0542,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.04,
|
1602 |
+
"grad_norm": 1.955440445323398,
|
1603 |
+
"learning_rate": 1.998991866941496e-05,
|
1604 |
+
"loss": 1.0849,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.04,
|
1609 |
+
"grad_norm": 2.0226531291514176,
|
1610 |
+
"learning_rate": 1.9989636736467278e-05,
|
1611 |
+
"loss": 1.1224,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.04,
|
1616 |
+
"grad_norm": 2.2336914840149285,
|
1617 |
+
"learning_rate": 1.9989350917495177e-05,
|
1618 |
+
"loss": 1.0551,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.04,
|
1623 |
+
"grad_norm": 2.046392279697416,
|
1624 |
+
"learning_rate": 1.9989061212609845e-05,
|
1625 |
+
"loss": 1.0738,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.04,
|
1630 |
+
"grad_norm": 2.248695264268023,
|
1631 |
+
"learning_rate": 1.998876762192397e-05,
|
1632 |
+
"loss": 1.019,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.04,
|
1637 |
+
"grad_norm": 2.3362932243579713,
|
1638 |
+
"learning_rate": 1.9988470145551765e-05,
|
1639 |
+
"loss": 1.0555,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.05,
|
1644 |
+
"grad_norm": 2.149028179411019,
|
1645 |
+
"learning_rate": 1.9988168783608955e-05,
|
1646 |
+
"loss": 1.0529,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.05,
|
1651 |
+
"grad_norm": 1.8633459882398478,
|
1652 |
+
"learning_rate": 1.9987863536212765e-05,
|
1653 |
+
"loss": 1.0074,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.05,
|
1658 |
+
"grad_norm": 2.0594450846907373,
|
1659 |
+
"learning_rate": 1.9987554403481938e-05,
|
1660 |
+
"loss": 0.966,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.05,
|
1665 |
+
"grad_norm": 1.9956893021238926,
|
1666 |
+
"learning_rate": 1.9987241385536732e-05,
|
1667 |
+
"loss": 1.0367,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.05,
|
1672 |
+
"grad_norm": 2.025631177166738,
|
1673 |
+
"learning_rate": 1.9986924482498907e-05,
|
1674 |
+
"loss": 1.0407,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.05,
|
1679 |
+
"grad_norm": 2.0369291335090365,
|
1680 |
+
"learning_rate": 1.998660369449175e-05,
|
1681 |
+
"loss": 1.0408,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.05,
|
1686 |
+
"grad_norm": 1.9777103589259433,
|
1687 |
+
"learning_rate": 1.998627902164004e-05,
|
1688 |
+
"loss": 1.0964,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.05,
|
1693 |
+
"grad_norm": 0.9884611294066915,
|
1694 |
+
"learning_rate": 1.998595046407008e-05,
|
1695 |
+
"loss": 0.7983,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.05,
|
1700 |
+
"grad_norm": 2.0510845934246746,
|
1701 |
+
"learning_rate": 1.998561802190968e-05,
|
1702 |
+
"loss": 1.0129,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.05,
|
1707 |
+
"grad_norm": 2.4092760114986467,
|
1708 |
+
"learning_rate": 1.9985281695288165e-05,
|
1709 |
+
"loss": 1.076,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.05,
|
1714 |
+
"grad_norm": 1.9933609047274952,
|
1715 |
+
"learning_rate": 1.998494148433636e-05,
|
1716 |
+
"loss": 1.0225,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.05,
|
1721 |
+
"grad_norm": 1.0232974321656905,
|
1722 |
+
"learning_rate": 1.9984597389186618e-05,
|
1723 |
+
"loss": 0.829,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.05,
|
1728 |
+
"grad_norm": 2.0605065022696967,
|
1729 |
+
"learning_rate": 1.9984249409972794e-05,
|
1730 |
+
"loss": 0.9931,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.05,
|
1735 |
+
"grad_norm": 2.2454749233665545,
|
1736 |
+
"learning_rate": 1.9983897546830243e-05,
|
1737 |
+
"loss": 1.0803,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.05,
|
1742 |
+
"grad_norm": 1.8431535853254453,
|
1743 |
+
"learning_rate": 1.998354179989585e-05,
|
1744 |
+
"loss": 0.983,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.05,
|
1749 |
+
"grad_norm": 1.8566618675252857,
|
1750 |
+
"learning_rate": 1.9983182169308004e-05,
|
1751 |
+
"loss": 0.9921,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.05,
|
1756 |
+
"grad_norm": 1.9375277651998517,
|
1757 |
+
"learning_rate": 1.9982818655206602e-05,
|
1758 |
+
"loss": 1.0113,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.05,
|
1763 |
+
"grad_norm": 1.9572548426006255,
|
1764 |
+
"learning_rate": 1.9982451257733047e-05,
|
1765 |
+
"loss": 1.1174,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.05,
|
1770 |
+
"grad_norm": 2.0028626956048434,
|
1771 |
+
"learning_rate": 1.9982079977030267e-05,
|
1772 |
+
"loss": 1.1028,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.05,
|
1777 |
+
"grad_norm": 1.96219145866627,
|
1778 |
+
"learning_rate": 1.9981704813242685e-05,
|
1779 |
+
"loss": 1.0566,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.05,
|
1784 |
+
"grad_norm": 2.072795047778876,
|
1785 |
+
"learning_rate": 1.9981325766516248e-05,
|
1786 |
+
"loss": 1.0744,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.05,
|
1791 |
+
"grad_norm": 2.036098657993234,
|
1792 |
+
"learning_rate": 1.9980942836998404e-05,
|
1793 |
+
"loss": 1.0763,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.05,
|
1798 |
+
"grad_norm": 2.1388481294252855,
|
1799 |
+
"learning_rate": 1.9980556024838116e-05,
|
1800 |
+
"loss": 1.1613,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.05,
|
1805 |
+
"grad_norm": 2.067974800297108,
|
1806 |
+
"learning_rate": 1.9980165330185857e-05,
|
1807 |
+
"loss": 0.998,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.05,
|
1812 |
+
"grad_norm": 1.8790643051942517,
|
1813 |
+
"learning_rate": 1.9979770753193605e-05,
|
1814 |
+
"loss": 0.996,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.05,
|
1819 |
+
"grad_norm": 1.9559433697812194,
|
1820 |
+
"learning_rate": 1.9979372294014854e-05,
|
1821 |
+
"loss": 1.0239,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.05,
|
1826 |
+
"grad_norm": 1.9308127181761399,
|
1827 |
+
"learning_rate": 1.9978969952804613e-05,
|
1828 |
+
"loss": 1.1269,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.05,
|
1833 |
+
"grad_norm": 1.924957556737311,
|
1834 |
+
"learning_rate": 1.9978563729719386e-05,
|
1835 |
+
"loss": 1.0322,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.05,
|
1840 |
+
"grad_norm": 2.119914670588116,
|
1841 |
+
"learning_rate": 1.99781536249172e-05,
|
1842 |
+
"loss": 1.111,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.05,
|
1847 |
+
"grad_norm": 2.2814838916359177,
|
1848 |
+
"learning_rate": 1.9977739638557593e-05,
|
1849 |
+
"loss": 0.9882,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.05,
|
1854 |
+
"grad_norm": 1.9764920210183117,
|
1855 |
+
"learning_rate": 1.99773217708016e-05,
|
1856 |
+
"loss": 1.0747,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.05,
|
1861 |
+
"grad_norm": 1.8237059936330955,
|
1862 |
+
"learning_rate": 1.997690002181178e-05,
|
1863 |
+
"loss": 1.0228,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.05,
|
1868 |
+
"grad_norm": 1.7957594475273144,
|
1869 |
+
"learning_rate": 1.9976474391752192e-05,
|
1870 |
+
"loss": 0.9876,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.05,
|
1875 |
+
"grad_norm": 1.9980073321283007,
|
1876 |
+
"learning_rate": 1.997604488078841e-05,
|
1877 |
+
"loss": 1.0911,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.05,
|
1882 |
+
"grad_norm": 2.0146788024415074,
|
1883 |
+
"learning_rate": 1.9975611489087516e-05,
|
1884 |
+
"loss": 1.022,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.05,
|
1889 |
+
"grad_norm": 2.1844582382911173,
|
1890 |
+
"learning_rate": 1.9975174216818097e-05,
|
1891 |
+
"loss": 1.0328,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.05,
|
1896 |
+
"grad_norm": 2.117333899762936,
|
1897 |
+
"learning_rate": 1.997473306415026e-05,
|
1898 |
+
"loss": 0.9903,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.05,
|
1903 |
+
"grad_norm": 1.8007107570814573,
|
1904 |
+
"learning_rate": 1.997428803125562e-05,
|
1905 |
+
"loss": 0.9672,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.05,
|
1910 |
+
"grad_norm": 2.094142577887572,
|
1911 |
+
"learning_rate": 1.9973839118307286e-05,
|
1912 |
+
"loss": 1.0761,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.05,
|
1917 |
+
"grad_norm": 1.9921256605922988,
|
1918 |
+
"learning_rate": 1.9973386325479897e-05,
|
1919 |
+
"loss": 1.0929,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.05,
|
1924 |
+
"grad_norm": 1.7196271013592903,
|
1925 |
+
"learning_rate": 1.9972929652949587e-05,
|
1926 |
+
"loss": 0.989,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.05,
|
1931 |
+
"grad_norm": 1.878734015541386,
|
1932 |
+
"learning_rate": 1.9972469100894005e-05,
|
1933 |
+
"loss": 1.0751,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.05,
|
1938 |
+
"grad_norm": 1.9232024443567461,
|
1939 |
+
"learning_rate": 1.9972004669492313e-05,
|
1940 |
+
"loss": 1.0705,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.05,
|
1945 |
+
"grad_norm": 1.2481706461115407,
|
1946 |
+
"learning_rate": 1.997153635892517e-05,
|
1947 |
+
"loss": 0.8429,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.05,
|
1952 |
+
"grad_norm": 1.8327598842861688,
|
1953 |
+
"learning_rate": 1.9971064169374755e-05,
|
1954 |
+
"loss": 1.0771,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.05,
|
1959 |
+
"grad_norm": 1.7554713225318588,
|
1960 |
+
"learning_rate": 1.9970588101024754e-05,
|
1961 |
+
"loss": 1.0262,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.05,
|
1966 |
+
"grad_norm": 2.1469666455805716,
|
1967 |
+
"learning_rate": 1.9970108154060357e-05,
|
1968 |
+
"loss": 1.0043,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.05,
|
1973 |
+
"grad_norm": 1.67449508407844,
|
1974 |
+
"learning_rate": 1.9969624328668267e-05,
|
1975 |
+
"loss": 0.9486,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.05,
|
1980 |
+
"grad_norm": 1.8820097189830565,
|
1981 |
+
"learning_rate": 1.9969136625036694e-05,
|
1982 |
+
"loss": 1.0906,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.05,
|
1987 |
+
"grad_norm": 2.1303500190062223,
|
1988 |
+
"learning_rate": 1.996864504335536e-05,
|
1989 |
+
"loss": 1.1237,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.05,
|
1994 |
+
"grad_norm": 1.780586955227666,
|
1995 |
+
"learning_rate": 1.9968149583815494e-05,
|
1996 |
+
"loss": 1.003,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.05,
|
2001 |
+
"grad_norm": 1.7489913602886422,
|
2002 |
+
"learning_rate": 1.996765024660983e-05,
|
2003 |
+
"loss": 0.9842,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.06,
|
2008 |
+
"grad_norm": 2.0155100896265767,
|
2009 |
+
"learning_rate": 1.996714703193261e-05,
|
2010 |
+
"loss": 1.0557,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.06,
|
2015 |
+
"grad_norm": 1.9438109572777202,
|
2016 |
+
"learning_rate": 1.996663993997959e-05,
|
2017 |
+
"loss": 0.9971,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.06,
|
2022 |
+
"grad_norm": 1.0728126863662977,
|
2023 |
+
"learning_rate": 1.9966128970948038e-05,
|
2024 |
+
"loss": 0.8342,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.06,
|
2029 |
+
"grad_norm": 1.9934840280210313,
|
2030 |
+
"learning_rate": 1.9965614125036712e-05,
|
2031 |
+
"loss": 1.0524,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.06,
|
2036 |
+
"grad_norm": 2.0936769507538386,
|
2037 |
+
"learning_rate": 1.9965095402445898e-05,
|
2038 |
+
"loss": 1.1212,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.06,
|
2043 |
+
"grad_norm": 1.9745427712772865,
|
2044 |
+
"learning_rate": 1.996457280337738e-05,
|
2045 |
+
"loss": 1.0978,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.06,
|
2050 |
+
"grad_norm": 1.9179177319145042,
|
2051 |
+
"learning_rate": 1.996404632803445e-05,
|
2052 |
+
"loss": 1.0146,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.06,
|
2057 |
+
"grad_norm": 2.052073495470475,
|
2058 |
+
"learning_rate": 1.9963515976621914e-05,
|
2059 |
+
"loss": 1.0465,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.06,
|
2064 |
+
"grad_norm": 1.8225286684088682,
|
2065 |
+
"learning_rate": 1.996298174934608e-05,
|
2066 |
+
"loss": 1.1047,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.06,
|
2071 |
+
"grad_norm": 1.7580289784696486,
|
2072 |
+
"learning_rate": 1.996244364641476e-05,
|
2073 |
+
"loss": 0.9965,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.06,
|
2078 |
+
"grad_norm": 2.0161159763669554,
|
2079 |
+
"learning_rate": 1.996190166803729e-05,
|
2080 |
+
"loss": 1.1507,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.06,
|
2085 |
+
"grad_norm": 1.8172911318254807,
|
2086 |
+
"learning_rate": 1.996135581442449e-05,
|
2087 |
+
"loss": 1.0353,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.06,
|
2092 |
+
"grad_norm": 1.8747317892295494,
|
2093 |
+
"learning_rate": 1.996080608578871e-05,
|
2094 |
+
"loss": 1.0875,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.06,
|
2099 |
+
"grad_norm": 2.0573127120786463,
|
2100 |
+
"learning_rate": 1.9960252482343797e-05,
|
2101 |
+
"loss": 1.0821,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.06,
|
2106 |
+
"grad_norm": 1.900633660421174,
|
2107 |
+
"learning_rate": 1.9959695004305097e-05,
|
2108 |
+
"loss": 1.0045,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.06,
|
2113 |
+
"grad_norm": 1.7491633697794904,
|
2114 |
+
"learning_rate": 1.995913365188948e-05,
|
2115 |
+
"loss": 1.0168,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.06,
|
2120 |
+
"grad_norm": 1.05599591440065,
|
2121 |
+
"learning_rate": 1.9958568425315316e-05,
|
2122 |
+
"loss": 0.9449,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.06,
|
2127 |
+
"grad_norm": 1.8883190997093964,
|
2128 |
+
"learning_rate": 1.9957999324802473e-05,
|
2129 |
+
"loss": 1.0428,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.06,
|
2134 |
+
"grad_norm": 1.720295899770073,
|
2135 |
+
"learning_rate": 1.9957426350572345e-05,
|
2136 |
+
"loss": 0.9482,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.06,
|
2141 |
+
"grad_norm": 1.9816495220080403,
|
2142 |
+
"learning_rate": 1.995684950284781e-05,
|
2143 |
+
"loss": 1.0557,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.06,
|
2148 |
+
"grad_norm": 1.92187930498817,
|
2149 |
+
"learning_rate": 1.9956268781853277e-05,
|
2150 |
+
"loss": 1.0582,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.06,
|
2155 |
+
"grad_norm": 1.795117789160023,
|
2156 |
+
"learning_rate": 1.9955684187814644e-05,
|
2157 |
+
"loss": 1.0761,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.06,
|
2162 |
+
"grad_norm": 1.9245112528044024,
|
2163 |
+
"learning_rate": 1.9955095720959318e-05,
|
2164 |
+
"loss": 1.1684,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.06,
|
2169 |
+
"grad_norm": 0.9632462029062842,
|
2170 |
+
"learning_rate": 1.9954503381516225e-05,
|
2171 |
+
"loss": 0.7674,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.06,
|
2176 |
+
"grad_norm": 1.9219486581712448,
|
2177 |
+
"learning_rate": 1.995390716971578e-05,
|
2178 |
+
"loss": 1.0211,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.06,
|
2183 |
+
"grad_norm": 1.9147529258042912,
|
2184 |
+
"learning_rate": 1.9953307085789916e-05,
|
2185 |
+
"loss": 1.0947,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.06,
|
2190 |
+
"grad_norm": 1.023656325583728,
|
2191 |
+
"learning_rate": 1.995270312997207e-05,
|
2192 |
+
"loss": 0.8131,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.06,
|
2197 |
+
"grad_norm": 1.7903741102627215,
|
2198 |
+
"learning_rate": 1.9952095302497185e-05,
|
2199 |
+
"loss": 0.9933,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.06,
|
2204 |
+
"grad_norm": 2.02294327217036,
|
2205 |
+
"learning_rate": 1.9951483603601703e-05,
|
2206 |
+
"loss": 0.9262,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.06,
|
2211 |
+
"grad_norm": 1.7932331946119509,
|
2212 |
+
"learning_rate": 1.9950868033523584e-05,
|
2213 |
+
"loss": 1.0388,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.06,
|
2218 |
+
"grad_norm": 1.9016906199071297,
|
2219 |
+
"learning_rate": 1.9950248592502286e-05,
|
2220 |
+
"loss": 1.0161,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.06,
|
2225 |
+
"grad_norm": 1.9496588477478443,
|
2226 |
+
"learning_rate": 1.994962528077878e-05,
|
2227 |
+
"loss": 1.0056,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.06,
|
2232 |
+
"grad_norm": 1.7857218614144716,
|
2233 |
+
"learning_rate": 1.9948998098595526e-05,
|
2234 |
+
"loss": 1.0717,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.06,
|
2239 |
+
"grad_norm": 2.2058906093436734,
|
2240 |
+
"learning_rate": 1.9948367046196513e-05,
|
2241 |
+
"loss": 1.0229,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.06,
|
2246 |
+
"grad_norm": 1.8833597215221982,
|
2247 |
+
"learning_rate": 1.9947732123827218e-05,
|
2248 |
+
"loss": 1.0789,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.06,
|
2253 |
+
"grad_norm": 1.0603717639007564,
|
2254 |
+
"learning_rate": 1.994709333173463e-05,
|
2255 |
+
"loss": 0.8642,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.06,
|
2260 |
+
"grad_norm": 2.033922433865109,
|
2261 |
+
"learning_rate": 1.994645067016725e-05,
|
2262 |
+
"loss": 1.0365,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.06,
|
2267 |
+
"grad_norm": 1.870516832634325,
|
2268 |
+
"learning_rate": 1.9945804139375066e-05,
|
2269 |
+
"loss": 0.9902,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.06,
|
2274 |
+
"grad_norm": 0.9861030358173385,
|
2275 |
+
"learning_rate": 1.9945153739609588e-05,
|
2276 |
+
"loss": 0.7725,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.06,
|
2281 |
+
"grad_norm": 1.9496791073979263,
|
2282 |
+
"learning_rate": 1.9944499471123824e-05,
|
2283 |
+
"loss": 1.0054,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.06,
|
2288 |
+
"grad_norm": 2.0447227654810196,
|
2289 |
+
"learning_rate": 1.9943841334172288e-05,
|
2290 |
+
"loss": 1.1126,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.06,
|
2295 |
+
"grad_norm": 2.24213973693733,
|
2296 |
+
"learning_rate": 1.9943179329010997e-05,
|
2297 |
+
"loss": 1.0988,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.06,
|
2302 |
+
"grad_norm": 1.8596491661660886,
|
2303 |
+
"learning_rate": 1.994251345589748e-05,
|
2304 |
+
"loss": 1.0312,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.06,
|
2309 |
+
"grad_norm": 1.9170393207754506,
|
2310 |
+
"learning_rate": 1.9941843715090758e-05,
|
2311 |
+
"loss": 1.0078,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.06,
|
2316 |
+
"grad_norm": 1.8284329304637323,
|
2317 |
+
"learning_rate": 1.994117010685137e-05,
|
2318 |
+
"loss": 0.9095,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.06,
|
2323 |
+
"grad_norm": 1.9552073759311999,
|
2324 |
+
"learning_rate": 1.9940492631441352e-05,
|
2325 |
+
"loss": 1.0652,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.06,
|
2330 |
+
"grad_norm": 2.0132724055989812,
|
2331 |
+
"learning_rate": 1.9939811289124246e-05,
|
2332 |
+
"loss": 1.0849,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.06,
|
2337 |
+
"grad_norm": 2.087593794800754,
|
2338 |
+
"learning_rate": 1.9939126080165093e-05,
|
2339 |
+
"loss": 1.0264,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.06,
|
2344 |
+
"grad_norm": 1.8617360148956503,
|
2345 |
+
"learning_rate": 1.9938437004830453e-05,
|
2346 |
+
"loss": 1.0128,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.06,
|
2351 |
+
"grad_norm": 1.6487974768481515,
|
2352 |
+
"learning_rate": 1.9937744063388365e-05,
|
2353 |
+
"loss": 0.924,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.06,
|
2358 |
+
"grad_norm": 1.8887708831775187,
|
2359 |
+
"learning_rate": 1.9937047256108405e-05,
|
2360 |
+
"loss": 0.9823,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.06,
|
2365 |
+
"grad_norm": 2.035534616225895,
|
2366 |
+
"learning_rate": 1.9936346583261622e-05,
|
2367 |
+
"loss": 1.0182,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.07,
|
2372 |
+
"grad_norm": 1.969898654916401,
|
2373 |
+
"learning_rate": 1.9935642045120585e-05,
|
2374 |
+
"loss": 1.0657,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.07,
|
2379 |
+
"grad_norm": 2.009217417503386,
|
2380 |
+
"learning_rate": 1.9934933641959367e-05,
|
2381 |
+
"loss": 0.9853,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.07,
|
2386 |
+
"grad_norm": 1.8124399073403066,
|
2387 |
+
"learning_rate": 1.9934221374053538e-05,
|
2388 |
+
"loss": 0.9696,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.07,
|
2393 |
+
"grad_norm": 1.9066949773049553,
|
2394 |
+
"learning_rate": 1.9933505241680176e-05,
|
2395 |
+
"loss": 1.1261,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.07,
|
2400 |
+
"grad_norm": 1.843104252573575,
|
2401 |
+
"learning_rate": 1.9932785245117852e-05,
|
2402 |
+
"loss": 1.0277,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.07,
|
2407 |
+
"grad_norm": 2.0257800926544487,
|
2408 |
+
"learning_rate": 1.9932061384646662e-05,
|
2409 |
+
"loss": 1.056,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.07,
|
2414 |
+
"grad_norm": 1.069660038019677,
|
2415 |
+
"learning_rate": 1.993133366054818e-05,
|
2416 |
+
"loss": 0.8464,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.07,
|
2421 |
+
"grad_norm": 2.047929245583957,
|
2422 |
+
"learning_rate": 1.9930602073105503e-05,
|
2423 |
+
"loss": 1.0297,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.07,
|
2428 |
+
"grad_norm": 1.7804271272628047,
|
2429 |
+
"learning_rate": 1.9929866622603217e-05,
|
2430 |
+
"loss": 0.9681,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.07,
|
2435 |
+
"grad_norm": 1.8036059077290953,
|
2436 |
+
"learning_rate": 1.992912730932742e-05,
|
2437 |
+
"loss": 1.0982,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.07,
|
2442 |
+
"grad_norm": 2.1577273526751513,
|
2443 |
+
"learning_rate": 1.992838413356571e-05,
|
2444 |
+
"loss": 1.0578,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.07,
|
2449 |
+
"grad_norm": 1.9351592416164614,
|
2450 |
+
"learning_rate": 1.992763709560718e-05,
|
2451 |
+
"loss": 1.0799,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.07,
|
2456 |
+
"grad_norm": 1.7613887958883605,
|
2457 |
+
"learning_rate": 1.992688619574244e-05,
|
2458 |
+
"loss": 1.118,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.07,
|
2463 |
+
"grad_norm": 1.7710807310053625,
|
2464 |
+
"learning_rate": 1.9926131434263587e-05,
|
2465 |
+
"loss": 1.0957,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.07,
|
2470 |
+
"grad_norm": 2.1014264167112024,
|
2471 |
+
"learning_rate": 1.9925372811464232e-05,
|
2472 |
+
"loss": 1.0916,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.07,
|
2477 |
+
"grad_norm": 1.695271742923848,
|
2478 |
+
"learning_rate": 1.9924610327639482e-05,
|
2479 |
+
"loss": 0.9742,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.07,
|
2484 |
+
"grad_norm": 1.946395684960528,
|
2485 |
+
"learning_rate": 1.992384398308595e-05,
|
2486 |
+
"loss": 1.0277,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.07,
|
2491 |
+
"grad_norm": 1.020284309819523,
|
2492 |
+
"learning_rate": 1.9923073778101743e-05,
|
2493 |
+
"loss": 0.8184,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.07,
|
2498 |
+
"grad_norm": 1.7877368746091395,
|
2499 |
+
"learning_rate": 1.9922299712986478e-05,
|
2500 |
+
"loss": 1.0512,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.07,
|
2505 |
+
"grad_norm": 1.9511674507474972,
|
2506 |
+
"learning_rate": 1.9921521788041273e-05,
|
2507 |
+
"loss": 0.9541,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.07,
|
2512 |
+
"grad_norm": 1.8548873026796064,
|
2513 |
+
"learning_rate": 1.9920740003568743e-05,
|
2514 |
+
"loss": 1.0032,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.07,
|
2519 |
+
"grad_norm": 2.369642361117581,
|
2520 |
+
"learning_rate": 1.9919954359873003e-05,
|
2521 |
+
"loss": 1.0463,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.07,
|
2526 |
+
"grad_norm": 1.6853151801856843,
|
2527 |
+
"learning_rate": 1.991916485725968e-05,
|
2528 |
+
"loss": 0.9586,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.07,
|
2533 |
+
"grad_norm": 2.121801973394243,
|
2534 |
+
"learning_rate": 1.991837149603589e-05,
|
2535 |
+
"loss": 1.007,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.07,
|
2540 |
+
"grad_norm": 1.8694623317506724,
|
2541 |
+
"learning_rate": 1.9917574276510256e-05,
|
2542 |
+
"loss": 1.0233,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.07,
|
2547 |
+
"grad_norm": 1.9936957782176836,
|
2548 |
+
"learning_rate": 1.99167731989929e-05,
|
2549 |
+
"loss": 1.11,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.07,
|
2554 |
+
"grad_norm": 2.044933129387799,
|
2555 |
+
"learning_rate": 1.9915968263795448e-05,
|
2556 |
+
"loss": 1.0585,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.07,
|
2561 |
+
"grad_norm": 1.9558810730478424,
|
2562 |
+
"learning_rate": 1.9915159471231025e-05,
|
2563 |
+
"loss": 0.9883,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.07,
|
2568 |
+
"grad_norm": 2.0169845204190078,
|
2569 |
+
"learning_rate": 1.9914346821614247e-05,
|
2570 |
+
"loss": 1.0129,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.07,
|
2575 |
+
"grad_norm": 2.0359412772425673,
|
2576 |
+
"learning_rate": 1.9913530315261252e-05,
|
2577 |
+
"loss": 1.0086,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.07,
|
2582 |
+
"grad_norm": 2.018034818878424,
|
2583 |
+
"learning_rate": 1.991270995248966e-05,
|
2584 |
+
"loss": 1.0717,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.07,
|
2589 |
+
"grad_norm": 1.9196933985110856,
|
2590 |
+
"learning_rate": 1.9911885733618594e-05,
|
2591 |
+
"loss": 1.0193,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.07,
|
2596 |
+
"grad_norm": 1.8924726827316862,
|
2597 |
+
"learning_rate": 1.9911057658968677e-05,
|
2598 |
+
"loss": 1.0684,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.07,
|
2603 |
+
"grad_norm": 1.957954173791168,
|
2604 |
+
"learning_rate": 1.9910225728862045e-05,
|
2605 |
+
"loss": 1.003,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.07,
|
2610 |
+
"grad_norm": 1.7327565474786015,
|
2611 |
+
"learning_rate": 1.9909389943622316e-05,
|
2612 |
+
"loss": 1.0367,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.07,
|
2617 |
+
"grad_norm": 2.1352232620719276,
|
2618 |
+
"learning_rate": 1.9908550303574617e-05,
|
2619 |
+
"loss": 1.1118,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.07,
|
2624 |
+
"grad_norm": 2.0787287987087506,
|
2625 |
+
"learning_rate": 1.990770680904557e-05,
|
2626 |
+
"loss": 1.0894,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.07,
|
2631 |
+
"grad_norm": 1.3620095751306678,
|
2632 |
+
"learning_rate": 1.9906859460363307e-05,
|
2633 |
+
"loss": 0.8552,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.07,
|
2638 |
+
"grad_norm": 1.9670341479798041,
|
2639 |
+
"learning_rate": 1.9906008257857447e-05,
|
2640 |
+
"loss": 0.9371,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.07,
|
2645 |
+
"grad_norm": 1.913167874526329,
|
2646 |
+
"learning_rate": 1.990515320185911e-05,
|
2647 |
+
"loss": 1.0643,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.07,
|
2652 |
+
"grad_norm": 1.9217382388951545,
|
2653 |
+
"learning_rate": 1.9904294292700917e-05,
|
2654 |
+
"loss": 1.0264,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.07,
|
2659 |
+
"grad_norm": 1.9352416915935249,
|
2660 |
+
"learning_rate": 1.9903431530716992e-05,
|
2661 |
+
"loss": 1.0726,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.07,
|
2666 |
+
"grad_norm": 2.032603191233027,
|
2667 |
+
"learning_rate": 1.9902564916242952e-05,
|
2668 |
+
"loss": 1.0659,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.07,
|
2673 |
+
"grad_norm": 1.9618668169033733,
|
2674 |
+
"learning_rate": 1.9901694449615917e-05,
|
2675 |
+
"loss": 1.0239,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.07,
|
2680 |
+
"grad_norm": 2.09195688744226,
|
2681 |
+
"learning_rate": 1.9900820131174503e-05,
|
2682 |
+
"loss": 1.0984,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.07,
|
2687 |
+
"grad_norm": 1.9234946021972024,
|
2688 |
+
"learning_rate": 1.989994196125882e-05,
|
2689 |
+
"loss": 1.0506,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.07,
|
2694 |
+
"grad_norm": 1.0991909496265084,
|
2695 |
+
"learning_rate": 1.989905994021049e-05,
|
2696 |
+
"loss": 0.8034,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.07,
|
2701 |
+
"grad_norm": 1.81014889387723,
|
2702 |
+
"learning_rate": 1.989817406837262e-05,
|
2703 |
+
"loss": 1.0006,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.07,
|
2708 |
+
"grad_norm": 0.993529462114099,
|
2709 |
+
"learning_rate": 1.989728434608981e-05,
|
2710 |
+
"loss": 0.8089,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.07,
|
2715 |
+
"grad_norm": 1.882727487143848,
|
2716 |
+
"learning_rate": 1.9896390773708182e-05,
|
2717 |
+
"loss": 1.0693,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.07,
|
2722 |
+
"grad_norm": 1.7729876511972384,
|
2723 |
+
"learning_rate": 1.9895493351575333e-05,
|
2724 |
+
"loss": 1.1044,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.07,
|
2729 |
+
"grad_norm": 1.8930447196671079,
|
2730 |
+
"learning_rate": 1.9894592080040364e-05,
|
2731 |
+
"loss": 1.0936,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.08,
|
2736 |
+
"grad_norm": 1.7141797791734572,
|
2737 |
+
"learning_rate": 1.9893686959453875e-05,
|
2738 |
+
"loss": 0.9307,
|
2739 |
+
"step": 390
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 0.08,
|
2743 |
+
"grad_norm": 2.0206681281369794,
|
2744 |
+
"learning_rate": 1.9892777990167967e-05,
|
2745 |
+
"loss": 1.0052,
|
2746 |
+
"step": 391
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"epoch": 0.08,
|
2750 |
+
"grad_norm": 1.9601360739455025,
|
2751 |
+
"learning_rate": 1.9891865172536233e-05,
|
2752 |
+
"loss": 1.0426,
|
2753 |
+
"step": 392
|
2754 |
+
},
|
2755 |
+
{
|
2756 |
+
"epoch": 0.08,
|
2757 |
+
"grad_norm": 1.6936067659027334,
|
2758 |
+
"learning_rate": 1.989094850691376e-05,
|
2759 |
+
"loss": 0.9326,
|
2760 |
+
"step": 393
|
2761 |
+
},
|
2762 |
+
{
|
2763 |
+
"epoch": 0.08,
|
2764 |
+
"grad_norm": 1.856166304153269,
|
2765 |
+
"learning_rate": 1.989002799365714e-05,
|
2766 |
+
"loss": 0.9852,
|
2767 |
+
"step": 394
|
2768 |
+
},
|
2769 |
+
{
|
2770 |
+
"epoch": 0.08,
|
2771 |
+
"grad_norm": 1.8367907200949016,
|
2772 |
+
"learning_rate": 1.9889103633124457e-05,
|
2773 |
+
"loss": 0.9592,
|
2774 |
+
"step": 395
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.08,
|
2778 |
+
"grad_norm": 2.007355585475035,
|
2779 |
+
"learning_rate": 1.9888175425675288e-05,
|
2780 |
+
"loss": 1.0117,
|
2781 |
+
"step": 396
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 0.08,
|
2785 |
+
"grad_norm": 1.8516073622878386,
|
2786 |
+
"learning_rate": 1.988724337167072e-05,
|
2787 |
+
"loss": 1.0603,
|
2788 |
+
"step": 397
|
2789 |
+
},
|
2790 |
+
{
|
2791 |
+
"epoch": 0.08,
|
2792 |
+
"grad_norm": 1.216372170317351,
|
2793 |
+
"learning_rate": 1.9886307471473323e-05,
|
2794 |
+
"loss": 0.7921,
|
2795 |
+
"step": 398
|
2796 |
+
},
|
2797 |
+
{
|
2798 |
+
"epoch": 0.08,
|
2799 |
+
"grad_norm": 1.9320279482943123,
|
2800 |
+
"learning_rate": 1.9885367725447162e-05,
|
2801 |
+
"loss": 1.0564,
|
2802 |
+
"step": 399
|
2803 |
+
},
|
2804 |
+
{
|
2805 |
+
"epoch": 0.08,
|
2806 |
+
"grad_norm": 1.8561275651991433,
|
2807 |
+
"learning_rate": 1.9884424133957808e-05,
|
2808 |
+
"loss": 1.0022,
|
2809 |
+
"step": 400
|
2810 |
+
},
|
2811 |
+
{
|
2812 |
+
"epoch": 0.08,
|
2813 |
+
"grad_norm": 1.912677537686615,
|
2814 |
+
"learning_rate": 1.9883476697372327e-05,
|
2815 |
+
"loss": 0.9387,
|
2816 |
+
"step": 401
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.08,
|
2820 |
+
"grad_norm": 1.0297626339996624,
|
2821 |
+
"learning_rate": 1.9882525416059273e-05,
|
2822 |
+
"loss": 0.8481,
|
2823 |
+
"step": 402
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 0.08,
|
2827 |
+
"grad_norm": 2.0247451338678344,
|
2828 |
+
"learning_rate": 1.98815702903887e-05,
|
2829 |
+
"loss": 0.9894,
|
2830 |
+
"step": 403
|
2831 |
+
},
|
2832 |
+
{
|
2833 |
+
"epoch": 0.08,
|
2834 |
+
"grad_norm": 1.9871374845980427,
|
2835 |
+
"learning_rate": 1.9880611320732154e-05,
|
2836 |
+
"loss": 1.0576,
|
2837 |
+
"step": 404
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 0.08,
|
2841 |
+
"grad_norm": 1.9930155207385365,
|
2842 |
+
"learning_rate": 1.9879648507462687e-05,
|
2843 |
+
"loss": 0.9972,
|
2844 |
+
"step": 405
|
2845 |
+
},
|
2846 |
+
{
|
2847 |
+
"epoch": 0.08,
|
2848 |
+
"grad_norm": 2.0646801640749652,
|
2849 |
+
"learning_rate": 1.9878681850954833e-05,
|
2850 |
+
"loss": 1.0854,
|
2851 |
+
"step": 406
|
2852 |
+
},
|
2853 |
+
{
|
2854 |
+
"epoch": 0.08,
|
2855 |
+
"grad_norm": 1.8818333915154013,
|
2856 |
+
"learning_rate": 1.9877711351584628e-05,
|
2857 |
+
"loss": 1.0383,
|
2858 |
+
"step": 407
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.08,
|
2862 |
+
"grad_norm": 1.9722438634458774,
|
2863 |
+
"learning_rate": 1.98767370097296e-05,
|
2864 |
+
"loss": 1.0116,
|
2865 |
+
"step": 408
|
2866 |
+
},
|
2867 |
+
{
|
2868 |
+
"epoch": 0.08,
|
2869 |
+
"grad_norm": 1.7066244506847275,
|
2870 |
+
"learning_rate": 1.987575882576878e-05,
|
2871 |
+
"loss": 1.0032,
|
2872 |
+
"step": 409
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"epoch": 0.08,
|
2876 |
+
"grad_norm": 1.902672174295704,
|
2877 |
+
"learning_rate": 1.987477680008268e-05,
|
2878 |
+
"loss": 1.1152,
|
2879 |
+
"step": 410
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 0.08,
|
2883 |
+
"grad_norm": 1.7623694577336437,
|
2884 |
+
"learning_rate": 1.9873790933053316e-05,
|
2885 |
+
"loss": 0.9807,
|
2886 |
+
"step": 411
|
2887 |
+
},
|
2888 |
+
{
|
2889 |
+
"epoch": 0.08,
|
2890 |
+
"grad_norm": 1.9894455403137112,
|
2891 |
+
"learning_rate": 1.9872801225064196e-05,
|
2892 |
+
"loss": 1.0516,
|
2893 |
+
"step": 412
|
2894 |
+
},
|
2895 |
+
{
|
2896 |
+
"epoch": 0.08,
|
2897 |
+
"grad_norm": 2.1739518583820248,
|
2898 |
+
"learning_rate": 1.987180767650032e-05,
|
2899 |
+
"loss": 1.0914,
|
2900 |
+
"step": 413
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.08,
|
2904 |
+
"grad_norm": 1.7886753698199753,
|
2905 |
+
"learning_rate": 1.987081028774819e-05,
|
2906 |
+
"loss": 0.9163,
|
2907 |
+
"step": 414
|
2908 |
+
},
|
2909 |
+
{
|
2910 |
+
"epoch": 0.08,
|
2911 |
+
"grad_norm": 1.1521609517012579,
|
2912 |
+
"learning_rate": 1.9869809059195787e-05,
|
2913 |
+
"loss": 0.8685,
|
2914 |
+
"step": 415
|
2915 |
+
},
|
2916 |
+
{
|
2917 |
+
"epoch": 0.08,
|
2918 |
+
"grad_norm": 1.8376642390611246,
|
2919 |
+
"learning_rate": 1.9868803991232602e-05,
|
2920 |
+
"loss": 0.9614,
|
2921 |
+
"step": 416
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 0.08,
|
2925 |
+
"grad_norm": 1.8501436743338675,
|
2926 |
+
"learning_rate": 1.986779508424961e-05,
|
2927 |
+
"loss": 1.0526,
|
2928 |
+
"step": 417
|
2929 |
+
},
|
2930 |
+
{
|
2931 |
+
"epoch": 0.08,
|
2932 |
+
"grad_norm": 1.6869946424617572,
|
2933 |
+
"learning_rate": 1.9866782338639278e-05,
|
2934 |
+
"loss": 1.0524,
|
2935 |
+
"step": 418
|
2936 |
+
},
|
2937 |
+
{
|
2938 |
+
"epoch": 0.08,
|
2939 |
+
"grad_norm": 1.8153293231608487,
|
2940 |
+
"learning_rate": 1.986576575479557e-05,
|
2941 |
+
"loss": 1.0178,
|
2942 |
+
"step": 419
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.08,
|
2946 |
+
"grad_norm": 1.7274306454495725,
|
2947 |
+
"learning_rate": 1.9864745333113948e-05,
|
2948 |
+
"loss": 0.9729,
|
2949 |
+
"step": 420
|
2950 |
+
},
|
2951 |
+
{
|
2952 |
+
"epoch": 0.08,
|
2953 |
+
"grad_norm": 1.939912973493156,
|
2954 |
+
"learning_rate": 1.986372107399136e-05,
|
2955 |
+
"loss": 1.0441,
|
2956 |
+
"step": 421
|
2957 |
+
},
|
2958 |
+
{
|
2959 |
+
"epoch": 0.08,
|
2960 |
+
"grad_norm": 1.7856564272695379,
|
2961 |
+
"learning_rate": 1.9862692977826242e-05,
|
2962 |
+
"loss": 1.1091,
|
2963 |
+
"step": 422
|
2964 |
+
},
|
2965 |
+
{
|
2966 |
+
"epoch": 0.08,
|
2967 |
+
"grad_norm": 1.8341112574380691,
|
2968 |
+
"learning_rate": 1.9861661045018537e-05,
|
2969 |
+
"loss": 0.8888,
|
2970 |
+
"step": 423
|
2971 |
+
},
|
2972 |
+
{
|
2973 |
+
"epoch": 0.08,
|
2974 |
+
"grad_norm": 1.8561948420468832,
|
2975 |
+
"learning_rate": 1.9860625275969673e-05,
|
2976 |
+
"loss": 1.039,
|
2977 |
+
"step": 424
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 0.08,
|
2981 |
+
"grad_norm": 1.7934335505219023,
|
2982 |
+
"learning_rate": 1.9859585671082562e-05,
|
2983 |
+
"loss": 1.0336,
|
2984 |
+
"step": 425
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.08,
|
2988 |
+
"grad_norm": 1.8360599761712861,
|
2989 |
+
"learning_rate": 1.9858542230761622e-05,
|
2990 |
+
"loss": 1.0813,
|
2991 |
+
"step": 426
|
2992 |
+
},
|
2993 |
+
{
|
2994 |
+
"epoch": 0.08,
|
2995 |
+
"grad_norm": 1.9867816840398522,
|
2996 |
+
"learning_rate": 1.985749495541276e-05,
|
2997 |
+
"loss": 1.0322,
|
2998 |
+
"step": 427
|
2999 |
+
},
|
3000 |
+
{
|
3001 |
+
"epoch": 0.08,
|
3002 |
+
"grad_norm": 1.9480167546900247,
|
3003 |
+
"learning_rate": 1.9856443845443364e-05,
|
3004 |
+
"loss": 1.0453,
|
3005 |
+
"step": 428
|
3006 |
+
},
|
3007 |
+
{
|
3008 |
+
"epoch": 0.08,
|
3009 |
+
"grad_norm": 2.1140835883562086,
|
3010 |
+
"learning_rate": 1.9855388901262324e-05,
|
3011 |
+
"loss": 1.0198,
|
3012 |
+
"step": 429
|
3013 |
+
},
|
3014 |
+
{
|
3015 |
+
"epoch": 0.08,
|
3016 |
+
"grad_norm": 2.064005705298389,
|
3017 |
+
"learning_rate": 1.9854330123280027e-05,
|
3018 |
+
"loss": 1.0869,
|
3019 |
+
"step": 430
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 0.08,
|
3023 |
+
"grad_norm": 1.6915389255562758,
|
3024 |
+
"learning_rate": 1.985326751190833e-05,
|
3025 |
+
"loss": 1.0063,
|
3026 |
+
"step": 431
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.08,
|
3030 |
+
"grad_norm": 1.8715414211034649,
|
3031 |
+
"learning_rate": 1.9852201067560607e-05,
|
3032 |
+
"loss": 0.9858,
|
3033 |
+
"step": 432
|
3034 |
+
},
|
3035 |
+
{
|
3036 |
+
"epoch": 0.08,
|
3037 |
+
"grad_norm": 1.9636600893192735,
|
3038 |
+
"learning_rate": 1.9851130790651706e-05,
|
3039 |
+
"loss": 1.0528,
|
3040 |
+
"step": 433
|
3041 |
+
},
|
3042 |
+
{
|
3043 |
+
"epoch": 0.08,
|
3044 |
+
"grad_norm": 1.966849427909118,
|
3045 |
+
"learning_rate": 1.9850056681597968e-05,
|
3046 |
+
"loss": 1.0915,
|
3047 |
+
"step": 434
|
3048 |
+
},
|
3049 |
+
{
|
3050 |
+
"epoch": 0.08,
|
3051 |
+
"grad_norm": 1.9070631155194202,
|
3052 |
+
"learning_rate": 1.9848978740817234e-05,
|
3053 |
+
"loss": 1.0174,
|
3054 |
+
"step": 435
|
3055 |
+
},
|
3056 |
+
{
|
3057 |
+
"epoch": 0.08,
|
3058 |
+
"grad_norm": 1.225217117866621,
|
3059 |
+
"learning_rate": 1.984789696872882e-05,
|
3060 |
+
"loss": 0.8672,
|
3061 |
+
"step": 436
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 0.08,
|
3065 |
+
"grad_norm": 2.038760319545761,
|
3066 |
+
"learning_rate": 1.9846811365753548e-05,
|
3067 |
+
"loss": 1.0013,
|
3068 |
+
"step": 437
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.08,
|
3072 |
+
"grad_norm": 2.022940013987618,
|
3073 |
+
"learning_rate": 1.9845721932313725e-05,
|
3074 |
+
"loss": 0.9708,
|
3075 |
+
"step": 438
|
3076 |
+
},
|
3077 |
+
{
|
3078 |
+
"epoch": 0.08,
|
3079 |
+
"grad_norm": 1.7647463910730028,
|
3080 |
+
"learning_rate": 1.984462866883314e-05,
|
3081 |
+
"loss": 0.9222,
|
3082 |
+
"step": 439
|
3083 |
+
},
|
3084 |
+
{
|
3085 |
+
"epoch": 0.08,
|
3086 |
+
"grad_norm": 1.866488318733101,
|
3087 |
+
"learning_rate": 1.9843531575737085e-05,
|
3088 |
+
"loss": 1.043,
|
3089 |
+
"step": 440
|
3090 |
+
},
|
3091 |
+
{
|
3092 |
+
"epoch": 0.08,
|
3093 |
+
"grad_norm": 1.8603090234733615,
|
3094 |
+
"learning_rate": 1.9842430653452333e-05,
|
3095 |
+
"loss": 0.9491,
|
3096 |
+
"step": 441
|
3097 |
+
},
|
3098 |
+
{
|
3099 |
+
"epoch": 0.09,
|
3100 |
+
"grad_norm": 1.8875785862623655,
|
3101 |
+
"learning_rate": 1.9841325902407144e-05,
|
3102 |
+
"loss": 0.9926,
|
3103 |
+
"step": 442
|
3104 |
+
},
|
3105 |
+
{
|
3106 |
+
"epoch": 0.09,
|
3107 |
+
"grad_norm": 1.942175598283091,
|
3108 |
+
"learning_rate": 1.9840217323031278e-05,
|
3109 |
+
"loss": 0.9455,
|
3110 |
+
"step": 443
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.09,
|
3114 |
+
"grad_norm": 1.985476015117722,
|
3115 |
+
"learning_rate": 1.983910491575598e-05,
|
3116 |
+
"loss": 1.0879,
|
3117 |
+
"step": 444
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 0.09,
|
3121 |
+
"grad_norm": 1.7275782937334652,
|
3122 |
+
"learning_rate": 1.9837988681013977e-05,
|
3123 |
+
"loss": 1.0377,
|
3124 |
+
"step": 445
|
3125 |
+
},
|
3126 |
+
{
|
3127 |
+
"epoch": 0.09,
|
3128 |
+
"grad_norm": 2.0112594657447027,
|
3129 |
+
"learning_rate": 1.9836868619239498e-05,
|
3130 |
+
"loss": 0.9808,
|
3131 |
+
"step": 446
|
3132 |
+
},
|
3133 |
+
{
|
3134 |
+
"epoch": 0.09,
|
3135 |
+
"grad_norm": 1.839058814041238,
|
3136 |
+
"learning_rate": 1.9835744730868244e-05,
|
3137 |
+
"loss": 0.8538,
|
3138 |
+
"step": 447
|
3139 |
+
},
|
3140 |
+
{
|
3141 |
+
"epoch": 0.09,
|
3142 |
+
"grad_norm": 2.157369191952226,
|
3143 |
+
"learning_rate": 1.9834617016337424e-05,
|
3144 |
+
"loss": 1.0736,
|
3145 |
+
"step": 448
|
3146 |
+
},
|
3147 |
+
{
|
3148 |
+
"epoch": 0.09,
|
3149 |
+
"grad_norm": 2.15228050930449,
|
3150 |
+
"learning_rate": 1.9833485476085715e-05,
|
3151 |
+
"loss": 1.019,
|
3152 |
+
"step": 449
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.09,
|
3156 |
+
"grad_norm": 1.91857747393063,
|
3157 |
+
"learning_rate": 1.98323501105533e-05,
|
3158 |
+
"loss": 1.0517,
|
3159 |
+
"step": 450
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 0.09,
|
3163 |
+
"grad_norm": 1.027868590912365,
|
3164 |
+
"learning_rate": 1.983121092018184e-05,
|
3165 |
+
"loss": 0.793,
|
3166 |
+
"step": 451
|
3167 |
+
},
|
3168 |
+
{
|
3169 |
+
"epoch": 0.09,
|
3170 |
+
"grad_norm": 1.773990990913634,
|
3171 |
+
"learning_rate": 1.9830067905414485e-05,
|
3172 |
+
"loss": 1.0535,
|
3173 |
+
"step": 452
|
3174 |
+
},
|
3175 |
+
{
|
3176 |
+
"epoch": 0.09,
|
3177 |
+
"grad_norm": 1.7448900958278026,
|
3178 |
+
"learning_rate": 1.9828921066695876e-05,
|
3179 |
+
"loss": 1.0646,
|
3180 |
+
"step": 453
|
3181 |
+
},
|
3182 |
+
{
|
3183 |
+
"epoch": 0.09,
|
3184 |
+
"grad_norm": 1.8842052222344852,
|
3185 |
+
"learning_rate": 1.982777040447214e-05,
|
3186 |
+
"loss": 0.9916,
|
3187 |
+
"step": 454
|
3188 |
+
},
|
3189 |
+
{
|
3190 |
+
"epoch": 0.09,
|
3191 |
+
"grad_norm": 1.965498295082324,
|
3192 |
+
"learning_rate": 1.9826615919190886e-05,
|
3193 |
+
"loss": 1.0308,
|
3194 |
+
"step": 455
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.09,
|
3198 |
+
"grad_norm": 1.8825201063090378,
|
3199 |
+
"learning_rate": 1.9825457611301226e-05,
|
3200 |
+
"loss": 1.0029,
|
3201 |
+
"step": 456
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 0.09,
|
3205 |
+
"grad_norm": 2.0328819583947006,
|
3206 |
+
"learning_rate": 1.9824295481253735e-05,
|
3207 |
+
"loss": 1.07,
|
3208 |
+
"step": 457
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 0.09,
|
3212 |
+
"grad_norm": 1.0825105072372898,
|
3213 |
+
"learning_rate": 1.98231295295005e-05,
|
3214 |
+
"loss": 0.7738,
|
3215 |
+
"step": 458
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 0.09,
|
3219 |
+
"grad_norm": 1.8165626539270863,
|
3220 |
+
"learning_rate": 1.9821959756495075e-05,
|
3221 |
+
"loss": 1.0831,
|
3222 |
+
"step": 459
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 0.09,
|
3226 |
+
"grad_norm": 1.9422401630853525,
|
3227 |
+
"learning_rate": 1.982078616269251e-05,
|
3228 |
+
"loss": 1.0181,
|
3229 |
+
"step": 460
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 0.09,
|
3233 |
+
"grad_norm": 1.7945631288777881,
|
3234 |
+
"learning_rate": 1.981960874854934e-05,
|
3235 |
+
"loss": 0.946,
|
3236 |
+
"step": 461
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.09,
|
3240 |
+
"grad_norm": 1.997337758639312,
|
3241 |
+
"learning_rate": 1.9818427514523584e-05,
|
3242 |
+
"loss": 1.0037,
|
3243 |
+
"step": 462
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 0.09,
|
3247 |
+
"grad_norm": 1.9193241141993849,
|
3248 |
+
"learning_rate": 1.9817242461074757e-05,
|
3249 |
+
"loss": 1.0171,
|
3250 |
+
"step": 463
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 0.09,
|
3254 |
+
"grad_norm": 1.9978405533297976,
|
3255 |
+
"learning_rate": 1.981605358866384e-05,
|
3256 |
+
"loss": 1.0468,
|
3257 |
+
"step": 464
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 0.09,
|
3261 |
+
"grad_norm": 1.8804833385106348,
|
3262 |
+
"learning_rate": 1.9814860897753317e-05,
|
3263 |
+
"loss": 0.916,
|
3264 |
+
"step": 465
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 0.09,
|
3268 |
+
"grad_norm": 1.8028266192668139,
|
3269 |
+
"learning_rate": 1.981366438880715e-05,
|
3270 |
+
"loss": 1.0217,
|
3271 |
+
"step": 466
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 0.09,
|
3275 |
+
"grad_norm": 1.7132667749630526,
|
3276 |
+
"learning_rate": 1.9812464062290788e-05,
|
3277 |
+
"loss": 1.0445,
|
3278 |
+
"step": 467
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.09,
|
3282 |
+
"grad_norm": 1.9219672750165928,
|
3283 |
+
"learning_rate": 1.9811259918671168e-05,
|
3284 |
+
"loss": 1.031,
|
3285 |
+
"step": 468
|
3286 |
+
},
|
3287 |
+
{
|
3288 |
+
"epoch": 0.09,
|
3289 |
+
"grad_norm": 1.8280416256736887,
|
3290 |
+
"learning_rate": 1.9810051958416697e-05,
|
3291 |
+
"loss": 1.0184,
|
3292 |
+
"step": 469
|
3293 |
+
},
|
3294 |
+
{
|
3295 |
+
"epoch": 0.09,
|
3296 |
+
"grad_norm": 1.6689592882194266,
|
3297 |
+
"learning_rate": 1.9808840181997292e-05,
|
3298 |
+
"loss": 1.0227,
|
3299 |
+
"step": 470
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 0.09,
|
3303 |
+
"grad_norm": 1.900220242233606,
|
3304 |
+
"learning_rate": 1.9807624589884335e-05,
|
3305 |
+
"loss": 1.0608,
|
3306 |
+
"step": 471
|
3307 |
+
},
|
3308 |
+
{
|
3309 |
+
"epoch": 0.09,
|
3310 |
+
"grad_norm": 1.6929314568440184,
|
3311 |
+
"learning_rate": 1.98064051825507e-05,
|
3312 |
+
"loss": 0.9899,
|
3313 |
+
"step": 472
|
3314 |
+
},
|
3315 |
+
{
|
3316 |
+
"epoch": 0.09,
|
3317 |
+
"grad_norm": 1.651258459418155,
|
3318 |
+
"learning_rate": 1.980518196047074e-05,
|
3319 |
+
"loss": 0.9661,
|
3320 |
+
"step": 473
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.09,
|
3324 |
+
"grad_norm": 2.1874289610603563,
|
3325 |
+
"learning_rate": 1.9803954924120297e-05,
|
3326 |
+
"loss": 0.9393,
|
3327 |
+
"step": 474
|
3328 |
+
},
|
3329 |
+
{
|
3330 |
+
"epoch": 0.09,
|
3331 |
+
"grad_norm": 1.8038819153786403,
|
3332 |
+
"learning_rate": 1.9802724073976695e-05,
|
3333 |
+
"loss": 0.9559,
|
3334 |
+
"step": 475
|
3335 |
+
},
|
3336 |
+
{
|
3337 |
+
"epoch": 0.09,
|
3338 |
+
"grad_norm": 1.770721462261662,
|
3339 |
+
"learning_rate": 1.9801489410518736e-05,
|
3340 |
+
"loss": 0.9643,
|
3341 |
+
"step": 476
|
3342 |
+
},
|
3343 |
+
{
|
3344 |
+
"epoch": 0.09,
|
3345 |
+
"grad_norm": 1.7367654491312072,
|
3346 |
+
"learning_rate": 1.9800250934226723e-05,
|
3347 |
+
"loss": 0.9443,
|
3348 |
+
"step": 477
|
3349 |
+
},
|
3350 |
+
{
|
3351 |
+
"epoch": 0.09,
|
3352 |
+
"grad_norm": 1.9591444421711552,
|
3353 |
+
"learning_rate": 1.9799008645582424e-05,
|
3354 |
+
"loss": 0.9747,
|
3355 |
+
"step": 478
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 0.09,
|
3359 |
+
"grad_norm": 1.6828464935006877,
|
3360 |
+
"learning_rate": 1.979776254506909e-05,
|
3361 |
+
"loss": 0.9754,
|
3362 |
+
"step": 479
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.09,
|
3366 |
+
"grad_norm": 1.908226452531261,
|
3367 |
+
"learning_rate": 1.9796512633171476e-05,
|
3368 |
+
"loss": 1.1313,
|
3369 |
+
"step": 480
|
3370 |
+
},
|
3371 |
+
{
|
3372 |
+
"epoch": 0.09,
|
3373 |
+
"grad_norm": 1.306422799793475,
|
3374 |
+
"learning_rate": 1.9795258910375787e-05,
|
3375 |
+
"loss": 0.8817,
|
3376 |
+
"step": 481
|
3377 |
+
},
|
3378 |
+
{
|
3379 |
+
"epoch": 0.09,
|
3380 |
+
"grad_norm": 1.9053129529215438,
|
3381 |
+
"learning_rate": 1.979400137716974e-05,
|
3382 |
+
"loss": 1.0261,
|
3383 |
+
"step": 482
|
3384 |
+
},
|
3385 |
+
{
|
3386 |
+
"epoch": 0.09,
|
3387 |
+
"grad_norm": 1.9080635923357674,
|
3388 |
+
"learning_rate": 1.979274003404252e-05,
|
3389 |
+
"loss": 0.9686,
|
3390 |
+
"step": 483
|
3391 |
+
},
|
3392 |
+
{
|
3393 |
+
"epoch": 0.09,
|
3394 |
+
"grad_norm": 1.8037616024087626,
|
3395 |
+
"learning_rate": 1.9791474881484793e-05,
|
3396 |
+
"loss": 1.0324,
|
3397 |
+
"step": 484
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 0.09,
|
3401 |
+
"grad_norm": 1.8250327442496437,
|
3402 |
+
"learning_rate": 1.9790205919988714e-05,
|
3403 |
+
"loss": 1.0082,
|
3404 |
+
"step": 485
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.09,
|
3408 |
+
"grad_norm": 1.8511505666088204,
|
3409 |
+
"learning_rate": 1.9788933150047916e-05,
|
3410 |
+
"loss": 1.1118,
|
3411 |
+
"step": 486
|
3412 |
+
},
|
3413 |
+
{
|
3414 |
+
"epoch": 0.09,
|
3415 |
+
"grad_norm": 1.8903056078178093,
|
3416 |
+
"learning_rate": 1.9787656572157515e-05,
|
3417 |
+
"loss": 1.0646,
|
3418 |
+
"step": 487
|
3419 |
+
},
|
3420 |
+
{
|
3421 |
+
"epoch": 0.09,
|
3422 |
+
"grad_norm": 1.9195313614337501,
|
3423 |
+
"learning_rate": 1.97863761868141e-05,
|
3424 |
+
"loss": 1.0412,
|
3425 |
+
"step": 488
|
3426 |
+
},
|
3427 |
+
{
|
3428 |
+
"epoch": 0.09,
|
3429 |
+
"grad_norm": 1.9799264468742026,
|
3430 |
+
"learning_rate": 1.9785091994515756e-05,
|
3431 |
+
"loss": 1.0861,
|
3432 |
+
"step": 489
|
3433 |
+
},
|
3434 |
+
{
|
3435 |
+
"epoch": 0.09,
|
3436 |
+
"grad_norm": 1.6755241928671092,
|
3437 |
+
"learning_rate": 1.9783803995762033e-05,
|
3438 |
+
"loss": 0.9611,
|
3439 |
+
"step": 490
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 0.09,
|
3443 |
+
"grad_norm": 1.961898488303003,
|
3444 |
+
"learning_rate": 1.9782512191053982e-05,
|
3445 |
+
"loss": 1.0589,
|
3446 |
+
"step": 491
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.09,
|
3450 |
+
"grad_norm": 1.775413845673962,
|
3451 |
+
"learning_rate": 1.9781216580894108e-05,
|
3452 |
+
"loss": 1.0354,
|
3453 |
+
"step": 492
|
3454 |
+
},
|
3455 |
+
{
|
3456 |
+
"epoch": 0.09,
|
3457 |
+
"grad_norm": 1.7928396588919673,
|
3458 |
+
"learning_rate": 1.977991716578642e-05,
|
3459 |
+
"loss": 1.0508,
|
3460 |
+
"step": 493
|
3461 |
+
},
|
3462 |
+
{
|
3463 |
+
"epoch": 0.1,
|
3464 |
+
"grad_norm": 1.9412161829079344,
|
3465 |
+
"learning_rate": 1.9778613946236395e-05,
|
3466 |
+
"loss": 1.0015,
|
3467 |
+
"step": 494
|
3468 |
+
},
|
3469 |
+
{
|
3470 |
+
"epoch": 0.1,
|
3471 |
+
"grad_norm": 1.7096885758847509,
|
3472 |
+
"learning_rate": 1.9777306922750995e-05,
|
3473 |
+
"loss": 0.9801,
|
3474 |
+
"step": 495
|
3475 |
+
},
|
3476 |
+
{
|
3477 |
+
"epoch": 0.1,
|
3478 |
+
"grad_norm": 1.8191213564062976,
|
3479 |
+
"learning_rate": 1.9775996095838655e-05,
|
3480 |
+
"loss": 1.0899,
|
3481 |
+
"step": 496
|
3482 |
+
},
|
3483 |
+
{
|
3484 |
+
"epoch": 0.1,
|
3485 |
+
"grad_norm": 1.964813155629249,
|
3486 |
+
"learning_rate": 1.9774681466009295e-05,
|
3487 |
+
"loss": 1.053,
|
3488 |
+
"step": 497
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.1,
|
3492 |
+
"grad_norm": 1.8601508656062495,
|
3493 |
+
"learning_rate": 1.9773363033774312e-05,
|
3494 |
+
"loss": 1.034,
|
3495 |
+
"step": 498
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 0.1,
|
3499 |
+
"grad_norm": 1.5995716944146932,
|
3500 |
+
"learning_rate": 1.977204079964659e-05,
|
3501 |
+
"loss": 0.9518,
|
3502 |
+
"step": 499
|
3503 |
+
},
|
3504 |
+
{
|
3505 |
+
"epoch": 0.1,
|
3506 |
+
"grad_norm": 1.9695321697574193,
|
3507 |
+
"learning_rate": 1.977071476414048e-05,
|
3508 |
+
"loss": 0.9849,
|
3509 |
+
"step": 500
|
3510 |
+
}
|
3511 |
+
],
|
3512 |
+
"logging_steps": 1.0,
|
3513 |
+
"max_steps": 5193,
|
3514 |
+
"num_input_tokens_seen": 0,
|
3515 |
+
"num_train_epochs": 1,
|
3516 |
+
"save_steps": 500,
|
3517 |
+
"total_flos": 678526663131136.0,
|
3518 |
+
"train_batch_size": 4,
|
3519 |
+
"trial_name": null,
|
3520 |
+
"trial_params": null
|
3521 |
+
}
|
checkpoint-500/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:753ca89c616551aba38e20d12dc4b4b4f5d9b0fe72ebbc846089c9420b01c2cc
|
3 |
+
size 6904
|
checkpoint-500/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-500/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|