--- language: - ko license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - k-seungri/k_whisper_dataset model-index: - name: k-seungri/k_whisper_model results: [] --- # k-seungri/k_whisper_model This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the k_whisper_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.6550 - Cer: 21.7699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0002 | 142.86 | 1000 | 0.5664 | 21.2389 | | 0.0001 | 285.71 | 2000 | 0.6215 | 20.5310 | | 0.0001 | 428.57 | 3000 | 0.6408 | 20.1770 | | 0.0001 | 571.43 | 4000 | 0.6550 | 21.7699 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1