File size: 1,334 Bytes
8a355d1
c9dad86
 
 
 
 
 
 
 
 
8a355d1
 
c9dad86
 
8a355d1
c9dad86
8a355d1
c9dad86
 
 
 
 
 
 
 
 
 
 
 
8a355d1
c9dad86
8a355d1
c9dad86
8a355d1
c9dad86
8a355d1
c9dad86
8a355d1
c9dad86
8a355d1
c9dad86
8a355d1
c9dad86
8a355d1
c9dad86
8a355d1
c9dad86
 
 
 
 
 
 
 
8a355d1
c9dad86
8a355d1
c9dad86
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
model-index:
- name: bert-finetuned-ner4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-ner4

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0775
- eval_precision: 0.9251
- eval_recall: 0.9460
- eval_f1: 0.9354
- eval_accuracy: 0.9841
- eval_runtime: 9.2322
- eval_samples_per_second: 352.028
- eval_steps_per_second: 44.085
- epoch: 1.0
- step: 1756

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1