kaizen9 commited on
Commit
75e897f
1 Parent(s): 71c479e

Update hf_prefixlm_converter.py

Browse files
Files changed (1) hide show
  1. hf_prefixlm_converter.py +67 -26
hf_prefixlm_converter.py CHANGED
@@ -1,8 +1,6 @@
1
  """Converts Huggingface Causal LM to Prefix LM.
2
-
3
  Conversion does lightweight surgery on a HuggingFace
4
  Causal LM to convert it to a Prefix LM.
5
-
6
  Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
  and treat the input prompt as the prefix in `generate`.
8
  """
@@ -12,29 +10,90 @@ from types import MethodType
12
  from typing import Any, List, MutableMapping, Optional, Tuple, Union
13
  import torch
14
  from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
15
- from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
16
- from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  from transformers.models.bloom.modeling_bloom import logging
18
  from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
19
  from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
20
  from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
21
  from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
22
  from transformers.models.opt.modeling_opt import OPTForCausalLM
23
- from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
24
- from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  logger = logging.get_logger(__name__)
26
  _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
27
  CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
28
 
29
  def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
30
  """Converts a GPT-style Causal LM to a Prefix LM.
31
-
32
  Supported HuggingFace model classes:
33
  - `GPT2LMHeadModel`
34
  - `GPTNeoForCausalLM`
35
  - `GPTNeoXForCausalLM`
36
  - `GPTJForCausalLM`
37
-
38
  See `convert_hf_causal_lm_to_prefix_lm` for more details.
39
  """
40
  if hasattr(model, '_prefix_lm_converted'):
@@ -44,7 +103,6 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
44
 
45
  def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
46
  """Helper that gets a list of the model's attention modules.
47
-
48
  Each module has a `bias` buffer used for causal masking. The Prefix LM
49
  conversion adds logic to dynamically manipulate these biases to support
50
  Prefix LM attention masking.
@@ -113,10 +171,8 @@ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_T
113
 
114
  def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
115
  """Converts a BLOOM Causal LM to a Prefix LM.
116
-
117
  Supported HuggingFace model classes:
118
  - `BloomForCausalLM`
119
-
120
  See `convert_hf_causal_lm_to_prefix_lm` for more details.
121
  """
122
  if hasattr(model, '_prefix_lm_converted'):
@@ -270,10 +326,8 @@ def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCa
270
 
271
  def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
272
  """Converts an OPT Causal LM to a Prefix LM.
273
-
274
  Supported HuggingFace model classes:
275
  - `OPTForCausalLM`
276
-
277
  See `convert_hf_causal_lm_to_prefix_lm` for more details.
278
  """
279
  if hasattr(model, '_prefix_lm_converted'):
@@ -339,7 +393,6 @@ CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPT
339
 
340
  def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
341
  """Converts a HuggingFace Causal LM to a Prefix LM.
342
-
343
  Supported HuggingFace model classes:
344
  - `GPT2LMHeadModel`
345
  - `GPTNeoForCausalLM`
@@ -347,49 +400,38 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
347
  - `GPTJForCausalLM`
348
  - `BloomForCausalLM`
349
  - `OPTForCausalLM`
350
-
351
  Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
352
  `generate` method and/or select underlying methods depending on the model class.
353
-
354
  These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
355
-
356
  Notes on training:
357
  To actually train the converted model as a Prefix LM, training batches will need to indicate
358
  the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
359
-
360
  **This is not a standard input and requires custom layers either within or after your dataloader.**
361
-
362
  In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
363
  such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
364
  That is, the prefix portion of the sequence should not generate any loss. Loss should only be
365
  generated by the target portion of the sequence.
366
-
367
  Notes on `GPTNeoForCausalLM`:
368
  To simplify the implementation, "global" and "local" attention layers are handled differently.
369
  For "global" layers, we handle conversion as described above. For "local" layers, which use a
370
  causal attention mask within a restricted local window, we do not alter the masking.
371
-
372
  Notes on `forward` method conversion:
373
  After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
374
  which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
375
  belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
376
  0 indicates token positions belonging to the target.
377
-
378
  The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
379
  causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
380
  the causal masks before returning the result.
381
-
382
  Notes on `generate` method conversion:
383
  After conversion, the `generate` method will have the same signature but will internally
384
  convert all causal masks to be purely bidirectional, call the original `generate` method, and
385
  (where appropriate) reset the causal masks before returning the result.
386
-
387
  This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
388
  "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
389
  each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
390
  another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
391
  previously-generated tokens (also as expected in a Prefix LM).
392
-
393
  To preserve the API, the original methods are renamed to `_original_forward` and
394
  `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
395
  them, respectively. Although implementation details vary by model class.
@@ -405,7 +447,6 @@ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES
405
 
406
  def add_bidirectional_mask_if_missing(batch: MutableMapping):
407
  """Attempts to add bidirectional_mask to batch if missing.
408
-
409
  Raises:
410
  KeyError if bidirectional_mask is missing and can't be inferred
411
  """
 
1
  """Converts Huggingface Causal LM to Prefix LM.
 
2
  Conversion does lightweight surgery on a HuggingFace
3
  Causal LM to convert it to a Prefix LM.
 
4
  Prefix LMs accepts a `bidirectional_mask` input in `forward`
5
  and treat the input prompt as the prefix in `generate`.
6
  """
 
10
  from typing import Any, List, MutableMapping, Optional, Tuple, Union
11
  import torch
12
  from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
13
+
14
+ #depreciated
15
+ #from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
16
+ def _expand_mask_bloom(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
17
+ """
18
+ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
19
+ """
20
+ batch_size, src_length = mask.shape
21
+ tgt_length = tgt_length if tgt_length is not None else src_length
22
+
23
+ expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
24
+ return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
25
+
26
+ #from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
27
+
28
+ def _make_causal_mask_bloom(
29
+ input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
30
+ ) -> torch.BoolTensor:
31
+ """
32
+ Make causal mask used for self-attention.
33
+ """
34
+ batch_size, target_length = input_ids_shape
35
+ mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
36
+ # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
37
+ seq_ids = torch.arange(target_length, device=device)
38
+ mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
39
+
40
+ if past_key_values_length > 0:
41
+ mask[:, :past_key_values_length] = False
42
+
43
+ expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
44
+ return expanded_mask
45
+
46
  from transformers.models.bloom.modeling_bloom import logging
47
  from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
48
  from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
49
  from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
50
  from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
51
  from transformers.models.opt.modeling_opt import OPTForCausalLM
52
+ #from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
53
+ #from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
54
+
55
+ def _make_causal_mask_opt(
56
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
57
+ ):
58
+ """
59
+ Make causal mask used for bi-directional self-attention.
60
+ """
61
+ bsz, tgt_len = input_ids_shape
62
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
63
+ mask_cond = torch.arange(mask.size(-1), device=device)
64
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
65
+ mask = mask.to(dtype)
66
+
67
+ if past_key_values_length > 0:
68
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
69
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
70
+
71
+
72
+ def _expand_mask_opt(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
73
+ """
74
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
75
+ """
76
+ bsz, src_len = mask.size()
77
+ tgt_len = tgt_len if tgt_len is not None else src_len
78
+
79
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
80
+
81
+ inverted_mask = 1.0 - expanded_mask
82
+
83
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
84
+
85
+
86
  logger = logging.get_logger(__name__)
87
  _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
88
  CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
89
 
90
  def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
91
  """Converts a GPT-style Causal LM to a Prefix LM.
 
92
  Supported HuggingFace model classes:
93
  - `GPT2LMHeadModel`
94
  - `GPTNeoForCausalLM`
95
  - `GPTNeoXForCausalLM`
96
  - `GPTJForCausalLM`
 
97
  See `convert_hf_causal_lm_to_prefix_lm` for more details.
98
  """
99
  if hasattr(model, '_prefix_lm_converted'):
 
103
 
104
  def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
105
  """Helper that gets a list of the model's attention modules.
 
106
  Each module has a `bias` buffer used for causal masking. The Prefix LM
107
  conversion adds logic to dynamically manipulate these biases to support
108
  Prefix LM attention masking.
 
171
 
172
  def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
173
  """Converts a BLOOM Causal LM to a Prefix LM.
 
174
  Supported HuggingFace model classes:
175
  - `BloomForCausalLM`
 
176
  See `convert_hf_causal_lm_to_prefix_lm` for more details.
177
  """
178
  if hasattr(model, '_prefix_lm_converted'):
 
326
 
327
  def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
328
  """Converts an OPT Causal LM to a Prefix LM.
 
329
  Supported HuggingFace model classes:
330
  - `OPTForCausalLM`
 
331
  See `convert_hf_causal_lm_to_prefix_lm` for more details.
332
  """
333
  if hasattr(model, '_prefix_lm_converted'):
 
393
 
394
  def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
395
  """Converts a HuggingFace Causal LM to a Prefix LM.
 
396
  Supported HuggingFace model classes:
397
  - `GPT2LMHeadModel`
398
  - `GPTNeoForCausalLM`
 
400
  - `GPTJForCausalLM`
401
  - `BloomForCausalLM`
402
  - `OPTForCausalLM`
 
403
  Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
404
  `generate` method and/or select underlying methods depending on the model class.
 
405
  These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
 
406
  Notes on training:
407
  To actually train the converted model as a Prefix LM, training batches will need to indicate
408
  the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
 
409
  **This is not a standard input and requires custom layers either within or after your dataloader.**
 
410
  In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
411
  such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
412
  That is, the prefix portion of the sequence should not generate any loss. Loss should only be
413
  generated by the target portion of the sequence.
 
414
  Notes on `GPTNeoForCausalLM`:
415
  To simplify the implementation, "global" and "local" attention layers are handled differently.
416
  For "global" layers, we handle conversion as described above. For "local" layers, which use a
417
  causal attention mask within a restricted local window, we do not alter the masking.
 
418
  Notes on `forward` method conversion:
419
  After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
420
  which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
421
  belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
422
  0 indicates token positions belonging to the target.
 
423
  The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
424
  causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
425
  the causal masks before returning the result.
 
426
  Notes on `generate` method conversion:
427
  After conversion, the `generate` method will have the same signature but will internally
428
  convert all causal masks to be purely bidirectional, call the original `generate` method, and
429
  (where appropriate) reset the causal masks before returning the result.
 
430
  This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
431
  "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
432
  each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
433
  another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
434
  previously-generated tokens (also as expected in a Prefix LM).
 
435
  To preserve the API, the original methods are renamed to `_original_forward` and
436
  `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
437
  them, respectively. Although implementation details vary by model class.
 
447
 
448
  def add_bidirectional_mask_if_missing(batch: MutableMapping):
449
  """Attempts to add bidirectional_mask to batch if missing.
 
450
  Raises:
451
  KeyError if bidirectional_mask is missing and can't be inferred
452
  """