"""Attention layers.""" import math import warnings from typing import List, Optional, Tuple import torch import torch.nn as nn from einops import rearrange from packaging import version from torch import nn from .fc import FC_CLASS_REGISTRY from .norm import NORM_CLASS_REGISTRY def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool: if original_is_causal and num_query_tokens != num_key_tokens: if num_query_tokens != 1: raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.') else: return False return original_is_causal def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: if multiquery: warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.')) kv_n_heads = 1 elif kv_n_heads is None: warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.')) kv_n_heads = n_heads q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) if past_key_value is not None: if len(past_key_value) != 0: k = torch.cat([past_key_value[0], k], dim=3) v = torch.cat([past_key_value[1], v], dim=2) past_key_value = (k, v) (b, _, s_q, d) = q.shape s_k = k.size(-1) if kv_n_heads > 1 and kv_n_heads < n_heads: k = k.repeat_interleave(n_heads // kv_n_heads, dim=1) v = v.repeat_interleave(n_heads // kv_n_heads, dim=1) if softmax_scale is None: softmax_scale = 1 / math.sqrt(d) attn_weight = q.matmul(k) * softmax_scale if attn_bias is not None: _s_q = max(0, attn_bias.size(2) - s_q) _s_k = max(0, attn_bias.size(3) - s_k) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.') attn_weight = attn_weight + attn_bias min_val = torch.finfo(q.dtype).min if key_padding_mask is not None: if attn_bias is not None: warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val) if is_causal and (not q.size(2) == 1): s = max(s_q, s_k) causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32) causal_mask = causal_mask.tril() causal_mask = causal_mask.to(torch.bool) causal_mask = ~causal_mask causal_mask = causal_mask[-s_q:, -s_k:] attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) attn_weight = torch.softmax(attn_weight, dim=-1) if dropout_p: attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) out = attn_weight.to(v.dtype).matmul(v) out = rearrange(out, 'b h s d -> b s (h d)') if needs_weights: return (out, attn_weight, past_key_value) return (out, None, past_key_value) def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[List[torch.dtype]]=None): if valid_dtypes is None: valid_dtypes = [torch.float16, torch.bfloat16] for tensor in tensors: if tensor.dtype not in valid_dtypes: raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.') if not tensor.is_cuda: raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).') ''' def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: try: from flash_attn import bert_padding, flash_attn_interface except: raise RuntimeError('Please install flash-attn==1.0.3.post0') check_valid_inputs(query, key, value) if multiquery: warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.')) kv_n_heads = 1 elif kv_n_heads is None: warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.')) kv_n_heads = n_heads if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if attn_bias is not None: raise NotImplementedError(f'attn_bias not implemented for flash attn.') (batch_size, seqlen) = query.shape[:2] if key_padding_mask is None: key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) query_padding_mask = key_padding_mask[:, -query.size(1):] (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask) query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask) key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask) value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) if kv_n_heads == 1: key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) elif kv_n_heads < n_heads: key_unpad = key_unpad.repeat_interleave(n_heads // kv_n_heads, dim=1) value_unpad = value_unpad.repeat_interleave(n_heads // kv_n_heads, dim=1) dropout_p = dropout_p if training else 0.0 reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) return (output, None, past_key_value) ''' def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]: if key_padding_mask is not None: raise ValueError('key_padding_mask should be None for flash attn.') del key_padding_mask if flash_attn_padding_info is None: raise ValueError('flash_attn_padding_info is required for flash attn.') try: from flash_attn import bert_padding, flash_attn_interface except: raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6') check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: raise NotImplementedError(f'attn_bias not implemented for flash attn.') (batch_size, seqlen) = query.shape[:2] indices_q = flash_attn_padding_info['indices_q'] indices_k = flash_attn_padding_info['indices_k'] indices_v = flash_attn_padding_info['indices_v'] cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q'] cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k'] max_seqlen_q = flash_attn_padding_info['max_seqlen_q'] max_seqlen_k = flash_attn_padding_info['max_seqlen_k'] query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q) query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k) key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v) value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa): raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.') if should_repeat_kv_for_gqa: if kv_n_heads == 1: key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) elif kv_n_heads < n_heads: key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1) value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1) dropout_p = dropout_p if training else 0.0 reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) if is_flash_v1_installed(): output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) elif is_flash_v2_installed(): alibi_kwargs = {} if check_alibi_support('flash'): alibi_kwargs = {'alibi_slopes': alibi_slopes} elif alibi_slopes is not None: raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2') output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs) else: raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.') output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) return (output, None, past_key_value) def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: Optional[int]=None, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: try: from .flash_attn_triton import flash_attn_func except: _installed = False if version.parse(torch.__version__) < version.parse('2.0.0'): _installed = True try: from flash_attn.flash_attn_triton import flash_attn_func except: _installed = False if not _installed: raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.') check_valid_inputs(query, key, value) if multiquery: warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.')) kv_n_heads = 1 elif kv_n_heads is None: warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.')) kv_n_heads = n_heads if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: _s_q = max(0, attn_bias.size(2) - query.size(1)) _s_k = max(0, attn_bias.size(3) - key.size(1)) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if dropout_p: raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.') dropout_p = dropout_p if training else 0.0 if needs_weights: raise NotImplementedError(f'attn_impl: triton cannot return attn weights.') if key_padding_mask is not None: warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') (b_size, s_k) = key_padding_mask.shape[:2] if attn_bias is None: attn_bias = query.new_zeros(b_size, 1, 1, s_k) attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min) query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads) value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads) if kv_n_heads == 1: key = key.repeat(1, 1, n_heads, 1) value = value.repeat(1, 1, n_heads, 1) elif kv_n_heads < n_heads: key = key.repeat_interleave(n_heads // kv_n_heads, dim=2) value = value.repeat_interleave(n_heads // kv_n_heads, dim=2) reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale) output = attn_output.view(*attn_output.shape[:2], -1) return (output, None, past_key_value) class GroupedQueryAttention(nn.Module): """Grouped Query Attention (GQA) is a generalization of Multi-head (MHA). and Multi-query attention (MQA). This allows the user to set a variable of number of kv_n_heads, rather than just n_heads or 1, as in MHA and MQA. Using torch or triton attention implementation enables user to also use additive bias. """ def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.d_model = d_model self.n_heads = n_heads self.kv_n_heads = kv_n_heads self.head_dim = d_model // n_heads if self.kv_n_heads <= 0: raise ValueError('kv_n_heads should be greater than zero.') if self.kv_n_heads > self.n_heads: raise ValueError('The number of KV heads should be less than or equal to Q heads.') if self.n_heads % self.kv_n_heads != 0: raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.') self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) self.attn_dropout_p = attn_pdrop fc_kwargs = {} if fc_type != 'te': fc_kwargs['device'] = device self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs) fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)] self.Wqkv._fused = (0, fuse_splits) if self.qk_ln: norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] self.q_ln = norm_class(self.d_model, device=device) self.k_ln = norm_class(self.kv_n_heads * self.head_dim, device=device) if self.attn_impl == 'flash': self.attn_fn = flash_attn_fn elif self.attn_impl == 'triton': self.attn_fn = triton_flash_attn_fn elif self.attn_impl == 'torch': self.attn_fn = scaled_multihead_dot_product_attention else: raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs) self.out_proj._is_residual = True def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, is_causal: bool=True, needs_weights: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: qkv = self.Wqkv(x) if self.clip_qkv: qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) (query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2) key_padding_mask = attention_mask if self.qk_ln: dtype = query.dtype query = self.q_ln(query).to(dtype) key = self.k_ln(key).to(dtype) (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights) return (self.out_proj(context), attn_weights, past_key_value) class MultiheadAttention(GroupedQueryAttention): """Multi-head self attention. Using torch or triton attention implementation enables user to also use additive bias. """ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None): super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device) class MultiQueryAttention(GroupedQueryAttention): """Multi-Query self attention. Using torch or triton attention implementation enables user to also use additive bias. """ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None): super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device) def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[Tuple[int, int, int, int]]: if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: if (prefix_lm or not causal) or use_sequence_id: return (1, n_heads, seq_len, seq_len) return (1, n_heads, 1, seq_len) elif prefix_lm or use_sequence_id: return (1, 1, seq_len, seq_len) return None else: raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]: if attn_impl == 'flash': return None elif attn_impl in ['torch', 'triton']: if alibi: (device, dtype) = (attn_bias.device, attn_bias.dtype) attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype)) return attn_bias else: raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None) -> torch.Tensor: _n_heads = 2 ** math.ceil(math.log2(n_heads)) m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) m = m.mul(alibi_bias_max / _n_heads) slopes = 1.0 / torch.pow(2, m) if _n_heads != n_heads: slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] return slopes.view(1, n_heads, 1, 1) def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor: alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) if full: alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1) alibi_bias = alibi_bias.abs().mul(-1) slopes = gen_slopes(n_heads, alibi_bias_max, device=device) alibi_bias = alibi_bias * slopes return alibi_bias.to(dtype=dtype) ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}