kaizen9's picture
Upload model checkpoints directly from S3
958d6f8 verified
raw
history blame contribute delete
No virus
24.5 kB
import math
import warnings
from collections.abc import Sequence
from copy import deepcopy
from functools import partial
from typing import Any, Callable, Optional, Union
import torch
from torch import nn
from torch.distributed._tensor import DTensor
from .layers_registry import fcs, module_init_fns, norms, param_init_fns
from .dmoe import GLU, MLP
try:
import transformer_engine.pytorch as te
except:
te = None
try:
import megablocks
except:
megablocks = None
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
del kwargs
if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable):
module.reset_parameters()
def fused_init_helper_(module: nn.Module, init_fn_: Callable, name_param: str='weight'):
"""Initializes parameters which have been fused for efficiency purposes.
Parameter initialization is often based on the parameters shape. If a layer is fused,
initialization should be based on the shapes of the original tensor instead of the
shape of the fused tensor. Layers which are fused should have the _fused
attribute. First element of _fused is the dimension along which the tensor is fused.
Second element is a an iterable of split indices.
Args:
module (nn.Module): The module to initialize.
init_fn_ (Callable): Initialization method.
name_param (str): Name of parameter to initialize within the module.
"""
_fused = getattr(module, '_fused', None)
if _fused is None:
raise RuntimeError(f'Internal logic error')
fused_param_init_helper(getattr(module, name_param), init_fn_, _fused)
def fused_param_init_helper(param: torch.Tensor, init_fn_: Callable, fused_parameters: tuple[int, list[int]]):
"""Initializes parameters that are fused together.
Args:
param (torch.Tensor): Tensor to initialize.
init_fn_ (Callable): Initialization method.
fused_parameters (tuple[int, list[int]]): First element of _fused is the dimension
along which the tensor is fused. Second element is a an iterable of split indices.
"""
p_ndims = param.ndim
dim, splits = fused_parameters
splits = (0, *splits, param.size(dim))
for s, e in zip(splits[:-1], splits[1:]):
slice_indices = [slice(None)] * p_ndims
slice_indices[dim] = slice(s, e)
init_fn_(param[slice_indices])
def stacked_init_helper_(module: nn.Module, init_fn_: Callable, name_param: str='weight'):
"""Initializes parameters stacked along a new dimension.
Parameter initialization is often based on the parameters shape. If a layer is stacked,
initialization should be based on the shapes of the original tensor instead of the
shape of the stacked tensor. Layers which are fused should have the _stacked_dim
attribute defining the new dimension along which they are stacked.
Args:
module (nn.Module): The module to initialize.
init_fn_ (Callable): Initialization method.
name_param (str): Name of parameter to initialize within the module.
"""
stack_dim = getattr(module, '_stack_dim', None)
if stack_dim is None:
raise RuntimeError(f'Internal logic error')
stacked_param_init_helper(getattr(module, name_param), init_fn_, stack_dim)
def stacked_param_init_helper(param: torch.Tensor, init_fn_: Callable, stack_dim: int):
"""Initialize parameters stacked along a new dimension.
Args:
param (torch.Tensor): Tensor to initialize.
init_fn_ (Callable): Initialization method.
stack_dim (int): Dimension along with parameters are stacked
"""
p_ndims = param.ndim
for idx in range(param.size(stack_dim)):
slice_indices = [slice(None)] * p_ndims
slice_indices[stack_dim] = idx
init_fn_(param[slice_indices])
def _flip_fan_mode(init_fn_: Callable):
"""Changes the mode of an init_fn_.
init_fn_'s "mode" is set to operate on standard torch modules eg torch.nn.Linear.
If a custom layer transposes its weights before they are allied such that it is
opposite pytorch's conventions, we must flip the fan mode, from fan_in to fan_out.
Args:
init_fn_ (Callable): Initialization method.
"""
_init_fn_ = deepcopy(init_fn_)
if 'mode' in _init_fn_.keywords:
if _init_fn_.keywords['mode'] == 'fan_in':
_init_fn_.keywords['mode'] = 'fan_out'
elif _init_fn_.keywords['mode'] == 'fan_out':
_init_fn_.keywords['mode'] = 'fan_in'
return _init_fn_
def fc_init(module: nn.Module, init_fn_: Callable, init_div_is_residual: Union[int, float, str, bool], div_is_residual: Optional[float], **kwargs: Any) -> bool:
del kwargs
if isinstance(module, tuple({fcs.get(n) for n in fcs.get_all()})):
if hasattr(module, '_fused'):
fused_init_helper_(module, init_fn_)
else:
init_fn_(module.weight)
if module.bias is not None:
assert isinstance(module.bias, torch.Tensor)
torch.nn.init.zeros_(module.bias)
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
with torch.no_grad():
module.weight.div_(div_is_residual)
return True
return False
def embedding_init(module: nn.Module, init_fn_: Callable, emb_init_std: Optional[float], emb_init_uniform_lim: Optional[Union[tuple[float, float], float]], **kwargs: Any) -> bool:
del kwargs
if isinstance(module, nn.Embedding):
if emb_init_std is not None:
std = emb_init_std
if std == 0:
warnings.warn(f'Embedding layer initialized to 0.')
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
elif emb_init_uniform_lim is not None:
lim = emb_init_uniform_lim
if isinstance(lim, Sequence):
if len(lim) > 2:
raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
if lim[0] == lim[1]:
warnings.warn(f'Embedding layer initialized to {lim[0]}.')
else:
if lim == 0:
warnings.warn(f'Embedding layer initialized to 0.')
lim = [-lim, lim]
a, b = lim
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
else:
emb_init_fn_ = init_fn_
emb_init_fn_(module.weight)
return True
return False
def norm_init(module: nn.Module, **kwargs: Any) -> bool:
del kwargs
if isinstance(module, tuple({norms.get(name) for name in norms.get_all()})):
if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor):
torch.nn.init.ones_(module.weight)
if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor):
torch.nn.init.zeros_(module.bias)
return True
return False
def multihead_attention_init(module: nn.Module, init_fn_: Callable, d_model: Optional[int], init_div_is_residual: Union[int, float, str, bool], div_is_residual: float, **kwargs: Any) -> bool:
del kwargs
if isinstance(module, nn.MultiheadAttention):
if module._qkv_same_embed_dim:
assert module.in_proj_weight is not None
assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
assert d_model is not None
_d = d_model
splits = (0, _d, 2 * _d, 3 * _d)
for s, e in zip(splits[:-1], splits[1:]):
init_fn_(module.in_proj_weight[s:e])
else:
assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
assert module.in_proj_weight is None
init_fn_(module.q_proj_weight)
init_fn_(module.k_proj_weight)
init_fn_(module.v_proj_weight)
if module.in_proj_bias is not None:
torch.nn.init.zeros_(module.in_proj_bias)
if module.bias_k is not None:
torch.nn.init.zeros_(module.bias_k)
if module.bias_v is not None:
torch.nn.init.zeros_(module.bias_v)
init_fn_(module.out_proj.weight)
if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
with torch.no_grad():
module.out_proj.weight.div_(div_is_residual)
if module.out_proj.bias is not None:
torch.nn.init.zeros_(module.out_proj.bias)
return True
return False
def te_layernorm_mlp_init(module: nn.Module, init_fn_: Callable, **kwargs: Any) -> bool:
del kwargs
if te is not None and isinstance(module, te.LayerNormMLP):
if isinstance(module.layer_norm_weight, torch.Tensor):
torch.nn.init.ones_(module.layer_norm_weight)
if isinstance(module.layer_norm_bias, torch.Tensor):
torch.nn.init.zeros_(module.layer_norm_bias)
init_fn_(module.fc1_weight)
if module.fc1_bias is not None:
assert isinstance(module.fc1_bias, torch.Tensor)
torch.nn.init.zeros_(module.fc1_bias)
init_fn_(module.fc2_weight)
if module.fc2_bias is not None:
assert isinstance(module.fc2_bias, torch.Tensor)
torch.nn.init.zeros_(module.fc2_bias)
with torch.no_grad():
module.fc2_weight.div_(div_is_residual)
return True
return False
def moe_init(module: nn.Module, init_fn_: Callable, init_div_is_residual: Union[int, float, str, bool], div_is_residual: float, **kwargs: Any) -> bool:
if megablocks is not None and isinstance(module, (megablocks.layers.moe.MoE, megablocks.layers.dmoe.dMoE, megablocks.layers.moe.ParallelMLP, megablocks.layers.dmoe.ParallelDroplessMLP)):
if hasattr(module, 'bias') and module.bias is not None:
torch.nn.init.zeros_(module.bias)
return True
elif megablocks is not None and isinstance(module, megablocks.layers.glu.SparseGLU):
_megablocks_sparse_glu_generic_param_init_fn_(module, init_fn_, bool(init_div_is_residual), div_is_residual)
return True
elif megablocks is not None and isinstance(module, megablocks.layers.mlp.SparseMLP):
_megablocks_sparse_mlp_generic_param_init_fn_(module, init_fn_, bool(init_div_is_residual), div_is_residual)
return True
elif megablocks is not None and isinstance(module, megablocks.layers.mlp.MLP):
_megablocks_mlp_generic_param_init_fn_(module, init_fn_, bool(init_div_is_residual), div_is_residual)
return True
elif isinstance(module, GLU):
init_fn_(module.w1)
init_fn_(module.v1)
init_fn_(module.w2)
return True
elif isinstance(module, MLP):
init_fn_(module.w1)
init_fn_(module.w2)
return True
return False
def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
init_div_is_residual = init_div_is_residual
if init_div_is_residual is False:
div_is_residual = 1.0
elif init_div_is_residual is True:
div_is_residual = math.sqrt(2 * n_layers)
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
div_is_residual = init_div_is_residual
elif init_div_is_residual.isnumeric():
div_is_residual = float(init_div_is_residual)
else:
div_is_residual = 1.0
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
all_module_init_fns = [module_init_fns.get(name) for name in module_init_fns.get_all()]
did_init = False
for module_init_fn in all_module_init_fns:
did_init = module_init_fn(module=module, init_fn_=init_fn_, d_model=d_model, init_div_is_residual=init_div_is_residual, div_is_residual=div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
if did_init:
break
if not did_init:
for _ in module.parameters(recurse=False):
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by any of the registered module_init_fns. ' + 'Please add an appropriate module_init_fn to the registry. Currently registered module_init_fns are: ' + ', '.join(module_init_fns.get_all()))
def _megablocks_sparse_mlp_generic_param_init_fn_(module: nn.Module, init_fn_: Callable, init_div_is_residual: bool=False, div_is_residual: float=1.0):
"""Initializes MegaBlocks MLP.
To enable elastic deterministic initialization, this method creates the entire
weight matrix then slice into the weight tensors such that the sampled weights
should not vary between moe world size for the same random seed.
Args:
module (nn.Module): The module to initialize.
init_fn_ (Callable): Initialization method.
init_div_is_residual (bool): Flag enabling parameters tagged with _is_residual
flag to be divided by div_is_residual.
div_is_residual (float): The value by which parameter initialization is divided
if init_div_is_residual flag is enabled.
"""
expert_process_group_size, rank = (1, 0)
if module.expert_parallel_group is not None:
expert_process_group_size = int(module.expert_parallel_group.size())
rank = int(module.expert_parallel_group.rank())
hidden_size = int(module.hidden_size)
w1 = module.w1
if isinstance(w1, DTensor):
w1 = w1._local_tensor
w1_size = list(w1.shape)
w1_size[0] = w1_size[0] * expert_process_group_size
n_exp = w1_size[0] // hidden_size
_fused = (0, [(n + 1) * hidden_size for n in range(n_exp - 1)])
_w1 = w1.new_empty(w1_size)
fused_param_init_helper(_w1, init_fn_, _fused)
_w1_local = _w1.chunk(expert_process_group_size, dim=0)[rank]
with torch.no_grad():
w1.copy_(_w1_local)
w2 = module.w2
if isinstance(w2, DTensor):
w2 = w2._local_tensor
w2_size = list(w2.shape)
w2_size[0] = w2_size[0] * expert_process_group_size
_w2 = w2.new_empty(w2_size)
fused_param_init_helper(_w2, _flip_fan_mode(init_fn_), _fused)
_w2_local = _w2.chunk(expert_process_group_size, dim=0)[rank]
with torch.no_grad():
w2.copy_(_w2_local)
if init_div_is_residual is not False:
with torch.no_grad():
w2.div_(div_is_residual)
def _megablocks_sparse_glu_generic_param_init_fn_(module: nn.Module, init_fn_: Callable, init_div_is_residual: bool=False, div_is_residual: float=1.0):
"""Initializes MegaBlocks Sparse GLU.
Extends the Megablocks Sparse MLP case to an additional weight v1 for GLUs.
This additional weight v1 has the same initialization procedure as w1 for MLPs.
Args:
module (nn.Module): The module to initialize.
init_fn_ (Callable): Initialization method.
init_div_is_residual (bool): Flag enabling parameters tagged with _is_residual
flag to be divided by div_is_residual.
div_is_residual (float): The value by which parameter initialization is divided
if init_div_is_residual flag is enabled.
"""
_megablocks_sparse_mlp_generic_param_init_fn_(module=module, init_fn_=init_fn_, init_div_is_residual=init_div_is_residual, div_is_residual=div_is_residual)
expert_process_group_size, rank = (1, 0)
if module.expert_parallel_group is not None:
expert_process_group_size = int(module.expert_parallel_group.size())
rank = int(module.expert_parallel_group.rank())
hidden_size = int(module.hidden_size)
v1 = module.v1
if isinstance(v1, DTensor):
v1 = v1._local_tensor
v1_size = list(v1.shape)
v1_size[0] = v1_size[0] * expert_process_group_size
n_exp = v1_size[0] // hidden_size
_fused = (0, [(n + 1) * hidden_size for n in range(n_exp - 1)])
_v1 = v1.new_empty(v1_size)
fused_param_init_helper(_v1, init_fn_, _fused)
_v1_local = _v1.chunk(expert_process_group_size, dim=0)[rank]
with torch.no_grad():
v1.copy_(_v1_local)
def _megablocks_mlp_generic_param_init_fn_(module: nn.Module, init_fn_: Callable, init_div_is_residual: bool=False, div_is_residual: float=1.0):
"""Initializes MegaBlocks' MLP.
To enable elastic deterministic initialization, this method creates the entire
weight matrix then slice into the weight tensors such that the sampled weights
should not vary between moe world size for the same random seed.
Args:
module (nn.Module): The module to initialize.
init_fn_ (Callable): Initialization method.
init_div_is_residual (bool): Flag enabling parameters tagged with _is_residual
flag to be divided by div_is_residual.
div_is_residual (float): The value by which parameter initialization is divided
if init_div_is_residual flag is enabled.
"""
expert_process_group_size, rank = (1, 0)
if module.expert_parallel_group is not None:
expert_process_group_size = int(module.expert_parallel_group.size())
rank = int(module.expert_parallel_group.rank())
_init_fn_ = _flip_fan_mode(init_fn_)
w1_size = list(module.w1.shape)
w1_size[0] = w1_size[0] * expert_process_group_size
_w1 = module.w1.new_empty(w1_size)
stacked_param_init_helper(_w1, _init_fn_, module._stack_dim)
_w1_local = _w1.chunk(expert_process_group_size, dim=0)[rank]
with torch.no_grad():
module.w1.copy_(_w1_local)
w2_size = list(module.w2.shape)
w2_size[0] = w2_size[0] * expert_process_group_size
_w2 = module.w2.new_empty(w2_size)
stacked_param_init_helper(_w2, _init_fn_, module._stack_dim)
_w2_local = _w2.chunk(expert_process_group_size, dim=0)[rank]
with torch.no_grad():
module.w2.copy_(_w2_local)
if init_div_is_residual is not False:
with torch.no_grad():
module.w2.div_(div_is_residual)
def _normal_init_(std: float, mean: float=0.0):
return partial(torch.nn.init.normal_, mean=mean, std=std)
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
init_fn_ = _normal_init_(std=std)
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
if init_std is None:
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, **kwargs: Any) -> None:
del kwargs
std = math.sqrt(2 / (5 * d_model))
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, **kwargs: Any) -> None:
"""From section 2.3.1 of GPT-NeoX-20B:
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
"""
del kwargs
residual_div = n_layers / math.sqrt(10)
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
del kwargs
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
del kwargs
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
del kwargs
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
del kwargs
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
param_init_fns.register('default_', func=torch_default_param_init_fn_)
param_init_fns.register('baseline_', func=baseline_param_init_fn_)
param_init_fns.register('kaiming_uniform_', func=kaiming_uniform_param_init_fn_)
param_init_fns.register('kaiming_normal_', func=kaiming_normal_param_init_fn_)
param_init_fns.register('neox_init_', func=neox_param_init_fn_)
param_init_fns.register('small_init_', func=small_param_init_fn_)
param_init_fns.register('xavier_uniform_', func=xavier_uniform_param_init_fn_)
param_init_fns.register('xavier_normal_', func=xavier_normal_param_init_fn_)
module_init_fns.register('fc', func=fc_init)
module_init_fns.register('embedding', func=embedding_init)
module_init_fns.register('norm', func=norm_init)
module_init_fns.register('multihead_attention', func=multihead_attention_init)
module_init_fns.register('te_layernorm_mlp', func=te_layernorm_mlp_init)
module_init_fns.register('moe', func=moe_init)