"""Attention layers.""" import copy import math import warnings from typing import Any, Optional import torch import transformers from einops import rearrange from packaging import version from torch import nn from .layers_registry import attention_classes, attention_implementations from .layer_builders import build_fc, build_norm from .config_defaults import fc_type_defaults def is_flash_v2_installed(v2_version: str='2.0.0'): assert version.parse(v2_version) >= version.parse('2.0.0') try: import flash_attn as flash_attn except: return False return version.parse(flash_attn.__version__) >= version.parse(v2_version) def is_flash_v1_installed(): try: import flash_attn as flash_attn except: return False return version.parse(flash_attn.__version__) < version.parse('2.0.0') def is_transformers_version_gte(hf_version: str) -> bool: return version.parse(transformers.__version__) >= version.parse(hf_version) def check_alibi_support(attention_impl: str) -> bool: return attention_impl != 'flash' or is_flash_v2_installed(v2_version='v2.4.2') from transformers.models.llama.modeling_llama import apply_rotary_pos_emb def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool: if original_is_causal and num_query_tokens != num_key_tokens: if num_query_tokens != 1: raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.') else: return False return original_is_causal def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor: """Perform repeat of kv heads along a particular dimension. hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim) n_rep: amount of repetitions of kv_n_heads Unlike torch.repeat_interleave, this function avoids allocating new memory. """ if n_rep == 1: return hidden b, s, kv_n_heads, d = hidden.shape hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d) return hidden.reshape(b, s, kv_n_heads * n_rep, d) def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, sliding_window_size: int=-1) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]: q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) if past_key_value is not None: if len(past_key_value) != 0: k = torch.cat([past_key_value[0], k], dim=3) v = torch.cat([past_key_value[1], v], dim=2) past_key_value = (k, v) b, _, s_q, d = q.shape s_k = k.size(-1) if kv_n_heads > 1 and kv_n_heads < n_heads: k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2) v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2) if softmax_scale is None: softmax_scale = 1 / math.sqrt(d) attn_weight = q.matmul(k) * softmax_scale if attn_bias is not None: _s_q = max(0, attn_bias.size(2) - s_q) _s_k = max(0, attn_bias.size(3) - s_k) attn_bias = attn_bias[:, :, _s_q:, _s_k:] if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.') attn_weight = attn_weight + attn_bias min_val = torch.finfo(q.dtype).min if key_padding_mask is not None: if attn_bias is not None: warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val) if is_causal and (not s_q == 1): s = max(s_q, s_k) causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32) causal_mask = causal_mask.tril() causal_mask = causal_mask.to(torch.bool) causal_mask = ~causal_mask causal_mask = causal_mask[-s_q:, -s_k:] attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) if sliding_window_size != -1: window_mask = torch.ones((s_q, s_k), dtype=torch.bool, device=attn_weight.device) if not s_q == 1: if s_q != s_k: raise ValueError('Number of queries should be equal to the number of keys.') window_mask = torch.tril(window_mask, diagonal=sliding_window_size) window_mask = torch.triu(window_mask, diagonal=-sliding_window_size) else: window_mask[:, :-(sliding_window_size + 1)] = False window_mask = ~window_mask attn_weight = attn_weight.masked_fill(window_mask.view(1, 1, s_q, s_k), min_val) attn_weight = torch.softmax(attn_weight, dim=-1) if dropout_p: attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) out = attn_weight.to(v.dtype).matmul(v) out = rearrange(out, 'b h s d -> b s (h d)') if needs_weights: return (out, attn_weight, past_key_value) return (out, None, past_key_value) def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]]=None): if valid_dtypes is None: valid_dtypes = [torch.float32, torch.float16, torch.bfloat16] for tensor in tensors: if tensor.dtype not in valid_dtypes: raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.') if not tensor.is_cuda: raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).') def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]: if key_padding_mask is not None: raise ValueError('key_padding_mask should be None for flash attn.') del key_padding_mask if flash_attn_padding_info is None: raise ValueError('flash_attn_padding_info is required for flash attn.') try: from flash_attn import bert_padding, flash_attn_interface except: raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6') check_valid_inputs(query, key, value) if past_key_value is not None: if len(past_key_value) != 0: key = torch.cat([past_key_value[0], key], dim=1) value = torch.cat([past_key_value[1], value], dim=1) past_key_value = (key, value) if attn_bias is not None: raise NotImplementedError(f'attn_bias not implemented for flash attn.') batch_size, seqlen = query.shape[:2] indices_q = flash_attn_padding_info['indices_q'].to(query.device) indices_k = flash_attn_padding_info['indices_k'].to(key.device) indices_v = flash_attn_padding_info['indices_v'].to(value.device) cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q'].to(query.device) cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k'].to(key.device) max_seqlen_q = flash_attn_padding_info['max_seqlen_q'] max_seqlen_k = flash_attn_padding_info['max_seqlen_k'] query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q) query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k) key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v) value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads) if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa): raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.') if should_repeat_kv_for_gqa: if kv_n_heads == 1: key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) elif kv_n_heads < n_heads: key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1) value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1) dropout_p = dropout_p if training else 0.0 reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) if is_flash_v1_installed(): output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) elif is_flash_v2_installed(): alibi_kwargs = {} if check_alibi_support('flash'): alibi_kwargs = {'alibi_slopes': alibi_slopes} elif alibi_slopes is not None: raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2') output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs) else: raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.') output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) return (output, None, past_key_value) @attention_classes.register_class('grouped_query_attention') class GroupedQueryAttention(nn.Module): """Grouped Query Attention (GQA) is a generalization of Multi-head (MHA). and Multi-query attention (MQA). This allows the user to set a variable of number of kv_n_heads, rather than just n_heads or 1, as in MHA and MQA. Using torch attention implementation enables user to also use additive bias. This class also supports cross-attention with different `in_features` for key and value fc projections. """ def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='flash', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, fused_qkv: bool=True, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', norm_eps: float=1e-05, fc_type: Optional[dict[str, Any]]=None, device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1, reuse_kv_layer_idx: Optional[int]=None, kv_dim: Optional[int]=None): super().__init__() self.attn_impl = attn_impl self.clip_qkv = clip_qkv self.qk_ln = qk_ln self.qk_gn = qk_gn self.fused_qkv = fused_qkv self.d_model = d_model self.n_heads = n_heads self.kv_n_heads = kv_n_heads self.sliding_window_size = sliding_window_size self.reuse_kv_layer_idx = reuse_kv_layer_idx self.kv_dim = kv_dim if kv_dim is not None else self.d_model self.head_dim = d_model // n_heads if fc_type is None: fc_type = copy.deepcopy(fc_type_defaults) fc_type['bias'] = bias fc_type['device'] = device fc_type_name = fc_type['name'] if self.kv_n_heads <= 0: raise ValueError('kv_n_heads should be greater than zero.') if self.kv_n_heads > self.n_heads: raise ValueError('The number of KV heads should be less than or equal to Q heads.') if self.n_heads % self.kv_n_heads != 0: raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.') if qk_ln and qk_gn: raise ValueError('Only one of qk_ln and qk_gn can be set to True.') self.softmax_scale = softmax_scale if self.softmax_scale is None: self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) self.attn_dropout_p = attn_pdrop if self.reuse_kv_layer_idx is not None: self.Wq = build_fc(name=fc_type_name, in_features=self.d_model, out_features=self.d_model, fc_kwargs=fc_type) fuse_splits = [i * self.head_dim for i in range(1, self.n_heads)] self.Wq._fused = (0, fuse_splits) elif self.fused_qkv: self.Wqkv = build_fc(name=fc_type_name, in_features=self.d_model, out_features=self.d_model + 2 * self.kv_n_heads * self.head_dim, fc_kwargs=fc_type) fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)] self.Wqkv._fused = (0, fuse_splits) else: self.Wq = build_fc(name=fc_type_name, in_features=self.d_model, out_features=self.d_model, fc_kwargs=fc_type) self.Wk = build_fc(name=fc_type_name, in_features=self.kv_dim, out_features=self.kv_n_heads * self.head_dim, fc_kwargs=fc_type) self.Wv = build_fc(name=fc_type_name, in_features=self.kv_dim, out_features=self.kv_n_heads * self.head_dim, fc_kwargs=fc_type) q_fuse_splits = [i * self.head_dim for i in range(1, self.n_heads)] kv_fuse_splits = [i * self.head_dim for i in range(1, self.kv_n_heads)] self.Wq._fused = (0, q_fuse_splits) self.Wk._fused = (0, kv_fuse_splits) self.Wv._fused = (0, kv_fuse_splits) if self.qk_ln or self.qk_gn: norm_size = self.head_dim if qk_gn else d_model self.q_ln = build_norm(name=norm_type.lower(), normalized_shape=norm_size, eps=norm_eps, device=device) if self.reuse_kv_layer_idx is None: if qk_ln: norm_size = self.head_dim * kv_n_heads self.k_ln = build_norm(name=norm_type.lower(), normalized_shape=norm_size, eps=norm_eps, device=device) self.attn_fn = attention_implementations.get(self.attn_impl) self.out_proj = build_fc(name=fc_type_name, in_features=self.d_model, out_features=self.d_model, fc_kwargs=fc_type) self.out_proj._is_residual = True def forward(self, x: torch.Tensor, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[dict]=None, is_causal: bool=True, needs_weights: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None, prev_layer_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, key_value_states: Optional[torch.Tensor]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]: extra_kwargs = {} if prev_layer_key_value is not None: extra_kwargs['prev_layer_key_value'] = prev_layer_key_value query, key, value = self.get_qkv(x=x, key_value_states=key_value_states, **extra_kwargs) if rotary_emb_w_meta_info is not None: query, key, value = self._apply_rotary_embeddings(rotary_emb_w_meta_info, query, key, value) extra_attn_kwargs = self.get_implementation_specific_args(attention_mask, alibi_slopes, flash_attn_padding_info) context, attn_weights, past_key_value = self.attn_fn(query, key, value, n_heads=self.n_heads, kv_n_heads=self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, sliding_window_size=self.sliding_window_size, **extra_attn_kwargs) return (self.out_proj(context), attn_weights, past_key_value) def get_qkv(self, x: torch.Tensor, prev_layer_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, key_value_states: Optional[torch.Tensor]=None) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Computes and returns the query, key, and value tensors. Args: x (torch.Tensor): The input query tensor. prev_layer_key_value (Optional[Tuple[torch.Tensor, torch.Tensor]]): The key value of the previous layer. key_value_states (Optional[torch.Tensor]): The input tensor for keys and values. Returns: query (torch.Tensor): The query tensor. key (torch.Tensor): The key tensor. value (torch.Tensor): The value tensor. """ if self.reuse_kv_layer_idx is not None: if prev_layer_key_value is None: raise ValueError('prev_layer_key_value is None, cannot reuse_prev_layer_kv.') key, value = prev_layer_key_value query = self.Wq(x) if self.clip_qkv: query = query.clamp(min=-self.clip_qkv, max=self.clip_qkv) if self.qk_ln or self.qk_gn: q_shape = query.shape if self.qk_gn: b, s = query.shape[:2] query = query.view(b, s, self.n_heads, -1) dtype = query.dtype query = self.q_ln(query).to(dtype).view(q_shape) return (query, key, value) if self.fused_qkv: if key_value_states is not None: raise ValueError('Cannot use separate hidden and key_value states when fused_qkv = True.') qkv = self.Wqkv(x) if self.clip_qkv: qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) query, key, value = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2) else: query = self.Wq(x) if key_value_states is not None: key = self.Wk(key_value_states) value = self.Wv(key_value_states) else: key = self.Wk(x) value = self.Wv(x) if self.clip_qkv: query = query.clamp(min=-self.clip_qkv, max=self.clip_qkv) key = key.clamp(min=-self.clip_qkv, max=self.clip_qkv) value = value.clamp(min=-self.clip_qkv, max=self.clip_qkv) if self.qk_ln or self.qk_gn: q_shape, k_shape = (query.shape, key.shape) if self.qk_gn: b, s = query.shape[:2] query = query.view(b, s, self.n_heads, -1) key = key.view(b, s, self.kv_n_heads, -1) dtype = query.dtype query = self.q_ln(query).to(dtype).view(q_shape) key = self.k_ln(key).to(dtype).view(k_shape) return (query, key, value) def _apply_rotary_embeddings(self, rotary_emb_w_meta_info: dict[str, Any], query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if self.reuse_kv_layer_idx is not None: orig_key, orig_value = (key, value) key, value = (torch.empty_like(key), torch.empty_like(value)) rotary_emb = rotary_emb_w_meta_info['rotary_emb'] seq_len = rotary_emb_w_meta_info['seq_len'] offset_info = rotary_emb_w_meta_info['offset_info'] bsz, seqlen = query.shape[:2] query = query.view(bsz, seqlen, -1, self.head_dim) key = key.view(bsz, seqlen, -1, self.head_dim) if rotary_emb_w_meta_info['impl'] == 'dail': value = value.view(bsz, seqlen, -1, self.head_dim) kv = torch.stack([key, value], dim=2) query, kv = rotary_emb(query, kv, seqlen_offset=offset_info, max_seqlen=seq_len) [key, value] = torch.unbind(kv, dim=2) value = value.view(bsz, seqlen, -1) elif rotary_emb_w_meta_info['impl'] == 'hf': if is_transformers_version_gte('4.38'): cos, sin = rotary_emb(x=value, position_ids=offset_info) else: cos, sin = rotary_emb(x=value, seq_len=seq_len) if is_transformers_version_gte('4.38'): cos = cos.to(query.device) sin = sin.to(query.device) query, key = apply_rotary_pos_emb(q=query, k=key, cos=cos, sin=sin, position_ids=None, unsqueeze_dim=2) elif is_transformers_version_gte('4.36'): query, key = apply_rotary_pos_emb(q=query, k=key, cos=cos, sin=sin, position_ids=offset_info, unsqueeze_dim=2) else: query = query.transpose(1, 2) key = key.transpose(1, 2) query, key = apply_rotary_pos_emb(q=query, k=key, cos=cos, sin=sin, position_ids=offset_info) query = query.transpose(1, 2) key = key.transpose(1, 2) query = query.view(bsz, seqlen, -1) key = key.view(bsz, seqlen, -1) if self.reuse_kv_layer_idx is not None: return (query, orig_key, orig_value) return (query, key, value) def get_implementation_specific_args(self, attention_mask: Optional[torch.Tensor]=None, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> dict[str, Any]: """Returns attention implementation specific args. Args: attention_mask (Optional[torch.Tensor]): The attention mask. alibi_slopes (Optional[torch.Tensor]): The alibi slopes. flash_attn_padding_info (Optional[dict[str, torch.Tensor]]): The padding information, only required for flash attention. Returns: extra_attn_kwargs (dict[str, Any]): Implementation specific args. """ if self.attn_impl == 'flash': extra_attn_kwargs = {'should_repeat_kv_for_gqa': not is_flash_v2_installed(), 'alibi_slopes': alibi_slopes, 'flash_attn_padding_info': flash_attn_padding_info, 'key_padding_mask': None} else: extra_attn_kwargs = {'key_padding_mask': attention_mask} return extra_attn_kwargs @attention_classes.register_class('multihead_attention') class MultiheadAttention(GroupedQueryAttention): """Multi-head self attention. Using torch attention implementation enables user to also use additive bias. """ def __init__(self, d_model: int, n_heads: int, attn_impl: str='flash', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, fused_qkv: bool=True, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', norm_eps: float=1e-05, fc_type: Optional[dict[str, Any]]=None, device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1, reuse_kv_layer_idx: Optional[int]=None, kv_dim: Optional[int]=None): super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, fused_qkv=fused_qkv, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, norm_eps=norm_eps, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size, reuse_kv_layer_idx=reuse_kv_layer_idx, kv_dim=kv_dim) @attention_classes.register_class('multiquery_attention') class MultiQueryAttention(GroupedQueryAttention): """Multi-Query self attention. Using torch attention implementation enables user to also use additive bias. """ def __init__(self, d_model: int, n_heads: int, attn_impl: str='flash', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, fused_qkv: bool=True, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', norm_eps: float=1e-05, fc_type: Optional[dict[str, Any]]=None, device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1, reuse_kv_layer_idx: Optional[int]=None, kv_dim: Optional[int]=None): super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, fused_qkv=fused_qkv, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, norm_eps=norm_eps, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size, reuse_kv_layer_idx=reuse_kv_layer_idx, kv_dim=kv_dim) def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, causal: bool, use_sequence_id: bool) -> Optional[tuple[int, int, int, int]]: if attn_impl == 'flash': return None elif attn_impl == 'torch': if alibi: if not causal or use_sequence_id: return (1, n_heads, seq_len, seq_len) return (1, n_heads, 1, seq_len) elif use_sequence_id: return (1, 1, seq_len, seq_len) return None else: raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]: if attn_impl == 'flash': return None elif attn_impl == 'torch': if alibi: device, dtype = (attn_bias.device, attn_bias.dtype) attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype)) return attn_bias else: raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None, return_1d: bool=False) -> torch.Tensor: _n_heads = 2 ** math.ceil(math.log2(n_heads)) m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) m = m.mul(alibi_bias_max / _n_heads) slopes = 1.0 / torch.pow(2, m) if _n_heads != n_heads: slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] if return_1d: return slopes return slopes.view(1, n_heads, 1, 1) def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor: alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) if full: alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1) alibi_bias = alibi_bias.abs().mul(-1) slopes = gen_slopes(n_heads, alibi_bias_max, device=device) alibi_bias = alibi_bias * slopes return alibi_bias.to(dtype=dtype) attention_implementations.register('flash', func=flash_attn_fn) attention_implementations.register('torch', func=scaled_multihead_dot_product_attention)