{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7864a5291090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7864a5291120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7864a52911b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7864a5291240>", "_build": "<function ActorCriticPolicy._build at 0x7864a52912d0>", "forward": "<function ActorCriticPolicy.forward at 0x7864a5291360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7864a52913f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7864a5291480>", "_predict": "<function ActorCriticPolicy._predict at 0x7864a5291510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7864a52915a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7864a5291630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7864a52916c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7864a5229540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1725550536432945901, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM24P7xc61+6yolMu9BJATeLLYo7vTVctgAAgD8AAIA/ZlBTve60ND/gQLm9pDZfvmpLlL3nDqm9AAAAAAAAAADapwy+CeIYPzLCN72BynG+8I/tvSuibT0AAAAAAAAAALPfXD2h9JE9MlwvPSTsLL4kEUk9k3t0vQAAAAAAAAAA7X+RPhQhdz8k0SY+n/SIvnJUmD4dxP28AAAAAAAAAADzhs09FKaaus1DqDp1tYK2tRsLu64BwrkAAAAAAACAPzOj6DqPXhW6WLvqu4OhezexUsk7053dtgAAgD8AAIA/gBcxPVyjArpEqbS5Gjy1M9kpq7st5dE4AACAPwAAgD8ANJU7P4+zP90h7D4/k7i+hKusuzjz1b0AAAAAAAAAAJo/C7xMYKk/RlOUvLIIqr5zUBe96/GzvQAAAAAAAAAAM2tqu+FItLo5gJ21+oR+sFvwijjNb6o0AACAPwAAgD9m7YS8w8VmuvLxGLrNTKu1NUhzO1upLzkAAIA/AACAP6Yuv732tC26c/o8OHKf3bUllpG7VWFctwAAAAAAAIA/zXc1va7Thbqkd0c5z48SNsXoKbveBWS4AACAPwAAgD8z5RQ8FKqKulEsyzuiobQ2vyUMO+h8pjUAAIA/AACAPw3xuz17foK6DmmpOSkHijTJSVO7l53FuAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGaQmkep4r2MAWyUTegDjAF0lEdAkrdrKA8SwnV9lChoBkdAYP9n6Eal12gHTegDaAhHQJK4JIUahpR1fZQoaAZHQGBPgy2x6fJoB03oA2gIR0CSvUQfZElWdX2UKGgGR0Bi9aG+K0laaAdN6ANoCEdAkr5R91EE1XV9lChoBkdAZW8MG5c1O2gHTegDaAhHQJLB3tAs0551fZQoaAZHQGIdNxdY4hloB03oA2gIR0CSxtCtRvWIdX2UKGgGR0BgRCvs7dSEaAdN6ANoCEdAkszMpobn5nV9lChoBkdAZa1Z+QU5/GgHTegDaAhHQJLNZ6X0Gu91fZQoaAZHQGTB+5WilBRoB03oA2gIR0CSz3UpNKywdX2UKGgGR0BgnBr30wrUaAdN6ANoCEdAktEb3sXzlXV9lChoBkdAYI/YYBNmDmgHTegDaAhHQJLUTDDTBqN1fZQoaAZHQGFFa72+PBBoB03oA2gIR0CS1wzErGzbdX2UKGgGR0BjM5iXpnpTaAdN6ANoCEdAkt1wfhddFHV9lChoBkdAYHT9srNGE2gHTegDaAhHQJL1nDQ7cO91fZQoaAZHQGOwdZA6dUdoB03oA2gIR0CS+BTAWSEEdX2UKGgGR0BnhVMbm2b5aAdN6ANoCEdAkvzTRhMJyHV9lChoBkdAYXX+hGpdbGgHTegDaAhHQJMKFsuWa+h1fZQoaAZHQGW0m0VrRBxoB03oA2gIR0CTCxpVS4vwdX2UKGgGR0BgMSv5gw49aAdN6ANoCEdAkxF+32EkB3V9lChoBkdAZ286ErXlKmgHTegDaAhHQJMSSoAGSp11fZQoaAZHQGZSHLzPKMhoB03oA2gIR0CTFRe/Ho5hdX2UKGgGR0BiONtsN2C/aAdN6ANoCEdAkxi7IYFaCHV9lChoBkdAZGnJqZc9n2gHTegDaAhHQJMeKQtBfKJ1fZQoaAZHQGMaL4N7SiNoB03oA2gIR0CTHqrpqynldX2UKGgGR0Bl0BEnb7CSaAdN6ANoCEdAkyDFGoaUA3V9lChoBkdAZTUcoYvWYmgHTegDaAhHQJMimXVsk6d1fZQoaAZHQGK0rPldTpBoB03oA2gIR0CTJtxT850bdX2UKGgGR0Bg4LR+jM3ZaAdN6ANoCEdAkysK7qY7aXV9lChoBkdAZfDSl3yI6GgHTegDaAhHQJMzh1SwW311fZQoaAZHQEO+RLbpNbloB00AAWgIR0CTNOwfQrtmdX2UKGgGR0BfmexjawljaAdN6ANoCEdAk0rPgNwzcnV9lChoBkdAZIoK1G9YfWgHTegDaAhHQJNMkQtjCpF1fZQoaAZHQGFwTWwu/URoB03oA2gIR0CTT+FZgXuWdX2UKGgGR0BmEs9yLhrFaAdN6ANoCEdAk1tVr6+FlHV9lChoBkdAYu2NhmXgL2gHTegDaAhHQJNcS4lQdjp1fZQoaAZHQGL/20JF9a5oB03oA2gIR0CTYn/KyOaOdX2UKGgGR0BnnwJswco6aAdN6ANoCEdAk2N9uP3i73V9lChoBkdAZInjVhCtzWgHTegDaAhHQJNmuMfigkF1fZQoaAZHQGJ4FO45Lh9oB03oA2gIR0CTafUYbbUPdX2UKGgGR0A2mZssQNCraAdNAQFoCEdAk2vO+VTrFHV9lChoBkdAYjei8Fpwj2gHTegDaAhHQJNunos7MgV1fZQoaAZHQGPHbvG6wt9oB03oA2gIR0CTbxL0Bfa6dX2UKGgGR0BnMMHryDqXaAdN6ANoCEdAk3DSHEdeY3V9lChoBkdAZZHZL7Gec2gHTegDaAhHQJN1Y7fYSQJ1fZQoaAZHQGTB8sMAmzBoB03oA2gIR0CTeCPfsNUgdX2UKGgGR0BmzsdilSCOaAdN6ANoCEdAk37OoUBXCHV9lChoBkdAYXNHf/FR52gHTegDaAhHQJOANJcxCY11fZQoaAZHQGUWar3j+71oB03oA2gIR0CTmLx2jfvXdX2UKGgGR0Bk49bA1vVFaAdN6ANoCEdAk5q40hvBJ3V9lChoBkdAXHq7EpAlfWgHTegDaAhHQJOeCOEM9bJ1fZQoaAZHQGMF5DZ13dNoB03oA2gIR0CTqR1cMVk+dX2UKGgGR0Bh0dT5wfhdaAdN6ANoCEdAk64D72tdRnV9lChoBkdAZaA0Xxe9jGgHTegDaAhHQJOu1mL9/Bp1fZQoaAZHQGbIsf7rLQpoB03oA2gIR0CTsap6hQFcdX2UKGgGR0BiUQISlFc6aAdN6ANoCEdAk7U4hY/3WXV9lChoBkdAYox6JqIrOWgHTegDaAhHQJO3OnBLwnZ1fZQoaAZHQGFcWdd3SrpoB03oA2gIR0CTuioKD017dX2UKGgGR0Bi5FEmY0EYaAdN6ANoCEdAk7qcbFS88XV9lChoBkdAY7rHJcPe6GgHTegDaAhHQJO8W88La251fZQoaAZHQEUof6GgzxhoB0vpaAhHQJO9yr7wazh1fZQoaAZHQGE4cMNMGotoB03oA2gIR0CTwM5tm+TNdX2UKGgGR0BnFyxVyWAxaAdN6ANoCEdAk8QdsnAqNXV9lChoBkdAZ6mliSaEz2gHTegDaAhHQJPMuinHead1fZQoaAZHQGFOS88La25oB03oA2gIR0CTzg54nndPdX2UKGgGR0Bif5OUMXrMaAdN6ANoCEdAk+N7owEhaHV9lChoBkdAZF5S+g13uGgHTegDaAhHQJPlLgjyFwl1fZQoaAZHQF3WLns9jgBoB03oA2gIR0CT6E3lCCz1dX2UKGgGR0Bjggh4dIXkaAdN6ANoCEdAk/PrULDyfHV9lChoBkdAY2URoysS02gHTegDaAhHQJP6SDSPU8V1fZQoaAZHQGVh3Rw6ySpoB03oA2gIR0CT+2X4TK1YdX2UKGgGR0Br/29WZJCjaAdNogJoCEdAk/zYODrZ8XV9lChoBkdAZoV+ee4Cp2gHTegDaAhHQJQCZU6xPft1fZQoaAZHQGZ6jqOcUdtoB03oA2gIR0CUBEMIeHSGdX2UKGgGR0BiOSa9bor4aAdN6ANoCEdAlAcXTAnDznV9lChoBkdAZJPcLSeAeGgHTegDaAhHQJQHgnpjc211fZQoaAZHQGZOLtu1ndxoB03oA2gIR0CUCSfZElVtdX2UKGgGR0BnnpNfw7T2aAdN6ANoCEdAlAqExEfDDXV9lChoBkdAZQpULDye7WgHTegDaAhHQJQQOpVCHAR1fZQoaAZHQGJBN1QqI8BoB03oA2gIR0CUFpWIoE0SdX2UKGgGR0BiwudPLxI8aAdN6ANoCEdAlBftMPBi1HV9lChoBkdAXsWEcsDnvGgHTegDaAhHQJQcfd9Dx9Z1fZQoaAZHQGFr6UJOWSloB03oA2gIR0CUMfmz0HyFdX2UKGgGR0BmzFQoCuEFaAdN6ANoCEdAlDTudf9gnnV9lChoBkdAYOtDZUT+N2gHTegDaAhHQJQ/tFI/Z/V1fZQoaAZHQGSVGhdt2s9oB03oA2gIR0CURGzch1TzdX2UKGgGR0BlNqBI4EOiaAdN6ANoCEdAlEU655JK8XV9lChoBkdAZXEvcrRSg2gHTegDaAhHQJRGNeXzDoB1fZQoaAZHQGfyYGD+R5loB03oA2gIR0CUS0yoGY8ddX2UKGgGR0BeH75/LDAKaAdN6ANoCEdAlE08uJ1q33V9lChoBkdAY0LTDwYtQWgHTegDaAhHQJRP7jR2KVJ1fZQoaAZHQGUQlGoaUA1oB03oA2gIR0CUUGRpUPxydX2UKGgGR0A4DbY9Pk7waAdNAgFoCEdAlFHHI6r/83V9lChoBkdAZ1DKgZjx1GgHTegDaAhHQJRSFvuPV/d1fZQoaAZHQFqEAS39aU1oB03oA2gIR0CUU16/qPfbdX2UKGgGR0BnQVn003wTaAdN6ANoCEdAlFhr2HtWuHV9lChoBkdAX23ZrYXfqGgHTegDaAhHQJRgSEal1r91fZQoaAZHQGQQwyIpH7RoB03oA2gIR0CUYf6MBIWhdX2UKGgGR0BxQEJpnHvMaAdNcgFoCEdAlGVM3dbgTHV9lChoBkdAZA+9Mbm2cGgHTegDaAhHQJRnPLTx5LR1fZQoaAZHQGcI7XxvvSdoB03oA2gIR0CUaNCzTnaGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |