File size: 2,458 Bytes
a5359bf 9e08afd c510713 a5359bf 9e08afd c510713 9e08afd c510713 9e08afd c510713 9e08afd c510713 9e08afd c510713 9e08afd c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 c510713 ec2ab04 a5359bf 9e08afd a5359bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: bert-base-cased
model-index:
- name: bert-base-cased-ner-conll2003
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9438052359513089
name: Precision
- type: recall
value: 0.9525412319084483
name: Recall
- type: f1
value: 0.9481531116508919
name: F1
- type: accuracy
value: 0.9910634321093416
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.9116307653519484
name: Accuracy
verified: true
- type: precision
value: 0.9366103911345081
name: Precision
verified: true
- type: recall
value: 0.9262526113340186
name: Recall
verified: true
- type: f1
value: 0.9314027058794109
name: F1
verified: true
- type: loss
value: 0.4366346299648285
name: loss
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-ner-conll2003
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0355
- Precision: 0.9438
- Recall: 0.9525
- F1: 0.9482
- Accuracy: 0.9911
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.1.0
- Tokenizers 0.12.1
|