File size: 2,458 Bytes
a5359bf
 
 
 
 
 
9e08afd
 
 
 
 
c510713
a5359bf
 
9e08afd
 
 
c510713
9e08afd
 
 
 
 
c510713
9e08afd
c510713
 
9e08afd
c510713
 
9e08afd
c510713
 
9e08afd
c510713
ec2ab04
 
 
 
 
 
 
 
 
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
c510713
ec2ab04
a5359bf
 
 
 
 
 
 
 
9e08afd
 
 
 
 
 
a5359bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: bert-base-cased
model-index:
- name: bert-base-cased-ner-conll2003
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      args: conll2003
    metrics:
    - type: precision
      value: 0.9438052359513089
      name: Precision
    - type: recall
      value: 0.9525412319084483
      name: Recall
    - type: f1
      value: 0.9481531116508919
      name: F1
    - type: accuracy
      value: 0.9910634321093416
      name: Accuracy
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: test
    metrics:
    - type: accuracy
      value: 0.9116307653519484
      name: Accuracy
      verified: true
    - type: precision
      value: 0.9366103911345081
      name: Precision
      verified: true
    - type: recall
      value: 0.9262526113340186
      name: Recall
      verified: true
    - type: f1
      value: 0.9314027058794109
      name: F1
      verified: true
    - type: loss
      value: 0.4366346299648285
      name: loss
      verified: true
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-cased-ner-conll2003

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0355
- Precision: 0.9438
- Recall: 0.9525
- F1: 0.9482
- Accuracy: 0.9911

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.1.0
- Tokenizers 0.12.1