File size: 2,231 Bytes
ccdc9a1 8b051cb ccdc9a1 8b051cb ccdc9a1 8b051cb ccdc9a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-subset
metrics:
- accuracy
model-index:
- name: cria-babylm2-subset-default-3e-4
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/babylm2-subset
type: kanishka/babylm2-subset
metrics:
- name: Accuracy
type: accuracy
value: 0.5183717396220663
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cria-babylm2-subset-default-3e-4
This model was trained from scratch on the kanishka/babylm2-subset dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6186
- Accuracy: 0.5184
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 2.5065 | 1.0 | 14142 | 2.7266 | 0.4912 |
| 2.3323 | 2.0 | 28284 | 2.5642 | 0.5074 |
| 2.2158 | 3.0 | 42426 | 2.4670 | 0.5184 |
| 2.1109 | 4.0 | 56568 | 2.4178 | 0.5249 |
| 2.0194 | 5.0 | 70710 | 2.4001 | 0.5280 |
| 1.938 | 6.0 | 84852 | 2.4067 | 0.5291 |
| 1.8569 | 7.0 | 98994 | 2.4313 | 0.5283 |
| 1.7668 | 8.0 | 113136 | 2.4766 | 0.5260 |
| 1.6733 | 9.0 | 127278 | 2.5417 | 0.5229 |
| 1.579 | 10.0 | 141420 | 2.6186 | 0.5184 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.19.1
|