File size: 2,949 Bytes
30fa7c7
6c2f4a4
30fa7c7
 
c770f39
 
30fa7c7
 
 
 
c770f39
 
 
 
 
 
 
 
 
 
 
30fa7c7
 
 
 
 
 
 
c770f39
30fa7c7
6c2f4a4
30fa7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2f4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fa7c7
 
 
 
6c2f4a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-sentence-tokenized
metrics:
- accuracy
model-index:
- name: opt-babylm2-20-epochs_seed-42_3e-4
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: kanishka/babylm2-sentence-tokenized
      type: kanishka/babylm2-sentence-tokenized
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5192642005255711
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opt-babylm2-20-epochs_seed-42_3e-4

This model was trained from scratch on the kanishka/babylm2-sentence-tokenized dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4950
- Accuracy: 0.5193

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 2.8017        | 1.0   | 21397  | 2.9043          | 0.4674   |
| 2.5697        | 2.0   | 42794  | 2.6914          | 0.4903   |
| 2.4593        | 3.0   | 64191  | 2.5998          | 0.5009   |
| 2.3962        | 4.0   | 85588  | 2.5532          | 0.5062   |
| 2.3371        | 5.0   | 106985 | 2.5247          | 0.5100   |
| 2.3029        | 6.0   | 128382 | 2.5101          | 0.5121   |
| 2.2663        | 7.0   | 149779 | 2.4970          | 0.5143   |
| 2.2435        | 8.0   | 171176 | 2.4892          | 0.5155   |
| 2.2171        | 9.0   | 192573 | 2.4831          | 0.5163   |
| 2.1902        | 10.0  | 213970 | 2.4811          | 0.5171   |
| 2.1695        | 11.0  | 235367 | 2.4788          | 0.5177   |
| 2.1548        | 12.0  | 256764 | 2.4811          | 0.5182   |
| 2.1307        | 13.0  | 278161 | 2.4788          | 0.5186   |
| 2.1228        | 14.0  | 299558 | 2.4802          | 0.5188   |
| 2.0984        | 15.0  | 320955 | 2.4807          | 0.5190   |
| 2.0845        | 16.0  | 342352 | 2.4828          | 0.5192   |
| 2.0687        | 17.0  | 363749 | 2.4844          | 0.5193   |
| 2.0578        | 18.0  | 385146 | 2.4892          | 0.5193   |
| 2.0413        | 19.0  | 406543 | 2.4918          | 0.5193   |
| 2.0185        | 20.0  | 427940 | 2.4950          | 0.5193   |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0