File size: 2,949 Bytes
30fa7c7 6c2f4a4 30fa7c7 c770f39 30fa7c7 c770f39 30fa7c7 c770f39 30fa7c7 6c2f4a4 30fa7c7 6c2f4a4 30fa7c7 6c2f4a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- kanishka/babylm2-sentence-tokenized
metrics:
- accuracy
model-index:
- name: opt-babylm2-20-epochs_seed-42_3e-4
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: kanishka/babylm2-sentence-tokenized
type: kanishka/babylm2-sentence-tokenized
metrics:
- name: Accuracy
type: accuracy
value: 0.5192642005255711
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-babylm2-20-epochs_seed-42_3e-4
This model was trained from scratch on the kanishka/babylm2-sentence-tokenized dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4950
- Accuracy: 0.5193
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 2.8017 | 1.0 | 21397 | 2.9043 | 0.4674 |
| 2.5697 | 2.0 | 42794 | 2.6914 | 0.4903 |
| 2.4593 | 3.0 | 64191 | 2.5998 | 0.5009 |
| 2.3962 | 4.0 | 85588 | 2.5532 | 0.5062 |
| 2.3371 | 5.0 | 106985 | 2.5247 | 0.5100 |
| 2.3029 | 6.0 | 128382 | 2.5101 | 0.5121 |
| 2.2663 | 7.0 | 149779 | 2.4970 | 0.5143 |
| 2.2435 | 8.0 | 171176 | 2.4892 | 0.5155 |
| 2.2171 | 9.0 | 192573 | 2.4831 | 0.5163 |
| 2.1902 | 10.0 | 213970 | 2.4811 | 0.5171 |
| 2.1695 | 11.0 | 235367 | 2.4788 | 0.5177 |
| 2.1548 | 12.0 | 256764 | 2.4811 | 0.5182 |
| 2.1307 | 13.0 | 278161 | 2.4788 | 0.5186 |
| 2.1228 | 14.0 | 299558 | 2.4802 | 0.5188 |
| 2.0984 | 15.0 | 320955 | 2.4807 | 0.5190 |
| 2.0845 | 16.0 | 342352 | 2.4828 | 0.5192 |
| 2.0687 | 17.0 | 363749 | 2.4844 | 0.5193 |
| 2.0578 | 18.0 | 385146 | 2.4892 | 0.5193 |
| 2.0413 | 19.0 | 406543 | 2.4918 | 0.5193 |
| 2.0185 | 20.0 | 427940 | 2.4950 | 0.5193 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|