--- library_name: transformers tags: - generated_from_trainer datasets: - kanishka/babylm2-rewritten-clean-spacy metrics: - accuracy model-index: - name: opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_3e-4 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-rewritten-clean-spacy type: kanishka/babylm2-rewritten-clean-spacy metrics: - name: Accuracy type: accuracy value: 0.4202126468521879 --- # opt-babylm2-rewritten-clean-spacy-32k-earlystop-40epochs_seed-42_3e-4 This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy dataset. It achieves the following results on the evaluation set: - Loss: 2.9892 - Accuracy: 0.4202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 6.8783 | 0.9996 | 1931 | 4.4654 | 0.2891 | | 4.2263 | 1.9997 | 3863 | 3.9179 | 0.3337 | | 3.7724 | 2.9999 | 5795 | 3.6397 | 0.3562 | | 3.5091 | 4.0 | 7727 | 3.4569 | 0.3724 | | 3.3306 | 4.9996 | 9658 | 3.3310 | 0.3838 | | 3.2012 | 5.9997 | 11590 | 3.2469 | 0.3918 | | 3.1088 | 6.9999 | 13522 | 3.1828 | 0.3982 | | 3.0364 | 8.0 | 15454 | 3.1404 | 0.4023 | | 2.9837 | 8.9996 | 17385 | 3.1080 | 0.4057 | | 2.9377 | 9.9997 | 19317 | 3.0840 | 0.4077 | | 2.9019 | 10.9999 | 21249 | 3.0633 | 0.4101 | | 2.8713 | 12.0 | 23181 | 3.0505 | 0.4117 | | 2.8449 | 12.9996 | 25112 | 3.0376 | 0.4130 | | 2.8231 | 13.9997 | 27044 | 3.0270 | 0.4143 | | 2.7828 | 14.9999 | 28976 | 3.0222 | 0.4150 | | 2.7644 | 16.0 | 30908 | 3.0160 | 0.4156 | | 2.7508 | 16.9996 | 32839 | 3.0100 | 0.4167 | | 2.7296 | 17.9997 | 34771 | 3.0023 | 0.4178 | | 2.7053 | 18.9999 | 36703 | 2.9967 | 0.4188 | | 2.6821 | 20.0 | 38635 | 2.9926 | 0.4195 | | 2.6601 | 20.9996 | 40566 | 2.9892 | 0.4202 | | 2.6406 | 21.9997 | 42498 | 2.9898 | 0.4204 | | 2.621 | 22.9999 | 44430 | 2.9921 | 0.4205 | | 2.6048 | 24.0 | 46362 | 2.9928 | 0.4207 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0