File size: 1,841 Bytes
e17fb3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: detr-resnet-50_adamw_hf_finetuned_food-roboflow
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr-resnet-50_adamw_hf_finetuned_food-roboflow

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5869

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.0037        | 1.52  | 50   | 5.2294          |
| 4.9032        | 3.03  | 100  | 4.1657          |
| 3.9974        | 4.55  | 150  | 3.3157          |
| 3.2722        | 6.06  | 200  | 2.9964          |
| 3.0497        | 7.58  | 250  | 2.6456          |
| 2.8708        | 9.09  | 300  | 2.7218          |
| 2.7799        | 10.61 | 350  | 2.6176          |
| 2.7701        | 12.12 | 400  | 2.6078          |
| 2.677         | 13.64 | 450  | 2.5869          |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1