# -------------------------------------------------------- # InternVL # Copyright (c) 2024 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import copy from transformers import LlamaConfig, Qwen2Config from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from .configuration_intern_vit import InternVisionConfig logger = logging.get_logger(__name__) class InternVLChatConfig(PretrainedConfig): model_type = "internvl_chat" is_composition = True def __init__( self, vision_config=None, llm_config=None, use_backbone_lora=0, use_llm_lora=0, select_layer=-1, force_image_size=None, downsample_ratio=0.5, template=None, dynamic_image_size=False, use_thumbnail=False, ps_version="v1", min_dynamic_patch=1, max_dynamic_patch=6, **kwargs, ): super().__init__(**kwargs) if vision_config is None: vision_config = {} logger.info("vision_config is None. Initializing the InternVisionConfig with default values.") if llm_config is None: llm_config = {"architectures": ["Qwen2ForCausalLM"]} logger.info("llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).") self.vision_config = InternVisionConfig(**vision_config) if llm_config["architectures"][0] == "LlamaForCausalLM": self.llm_config = LlamaConfig(**llm_config) elif llm_config["architectures"][0] == "Qwen2ForCausalLM": self.llm_config = Qwen2Config(**llm_config) else: raise ValueError("Unsupported architecture: {}".format(llm_config["architectures"][0])) self.use_backbone_lora = use_backbone_lora self.use_llm_lora = use_llm_lora self.select_layer = select_layer self.force_image_size = force_image_size self.downsample_ratio = downsample_ratio self.template = template self.dynamic_image_size = dynamic_image_size self.use_thumbnail = use_thumbnail self.ps_version = ps_version # pixel shuffle version self.min_dynamic_patch = min_dynamic_patch self.max_dynamic_patch = max_dynamic_patch logger.info(f"vision_select_layer: {self.select_layer}") logger.info(f"ps_version: {self.ps_version}") logger.info(f"min_dynamic_patch: {self.min_dynamic_patch}") logger.info(f"max_dynamic_patch: {self.max_dynamic_patch}") def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["vision_config"] = self.vision_config.to_dict() output["llm_config"] = self.llm_config.to_dict() output["model_type"] = self.__class__.model_type output["use_backbone_lora"] = self.use_backbone_lora output["use_llm_lora"] = self.use_llm_lora output["select_layer"] = self.select_layer output["force_image_size"] = self.force_image_size output["downsample_ratio"] = self.downsample_ratio output["template"] = self.template output["dynamic_image_size"] = self.dynamic_image_size output["use_thumbnail"] = self.use_thumbnail output["ps_version"] = self.ps_version output["min_dynamic_patch"] = self.min_dynamic_patch output["max_dynamic_patch"] = self.max_dynamic_patch return output