--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - thennal/IMaSC - vrclc/openslr63 - thennal/indic_tts_ml model-index: - name: XLSR-WithLM-Malayalam results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: OpenSLR Malayalam -Test type: vrclc/openslr63 config: ml split: test args: ml metrics: - type: wer value: 27.3 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Goole Fleurs type: google/fleurs config: ml split: test args: ml metrics: - type: wer value: 37.2 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: MSC type: smcproject/msc config: ml split: train args: ml metrics: - type: wer value: 52.9 name: WER --- # XLSR-LM-NewData This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [Indic TTS Malayalam](https://huggingface.co/datasets/thennal/indic_tts_ml), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63) datasets. It achieves the following results on the evaluation set: - Loss: 0.1395 - Wer: 0.2952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.4912 | 0.1165 | 1000 | 0.5497 | 0.7011 | | 0.5377 | 0.2330 | 2000 | 0.3292 | 0.5364 | | 0.4343 | 0.3494 | 3000 | 0.2475 | 0.4424 | | 0.3678 | 0.4659 | 4000 | 0.2145 | 0.4014 | | 0.3345 | 0.5824 | 5000 | 0.1898 | 0.3774 | | 0.3029 | 0.6989 | 6000 | 0.1718 | 0.3441 | | 0.2685 | 0.8153 | 7000 | 0.1517 | 0.3135 | | 0.2385 | 0.9318 | 8000 | 0.1395 | 0.2952 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1