--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_keras_callback model-index: - name: kaytoo2022/t5_technical_qa_with_react results: [] inference: true library_name: transformers pipeline_tag: text2text-generation widget: - text: >- summarize: function Example() { let [isLoading, setIsLoading] = React.useState(false); let handlePress = () => { // Trigger button pending state setIsLoading(true); setTimeout(() => { // Cancel button pending state setIsLoading(false); }, 3000); }; return ( ); } example_title: Question answering - text: >- question: What does the setTimeout function do? context: function Example() { let [isLoading, setIsLoading] = React.useState(false); let handlePress = () => { // Trigger button pending state setIsLoading(true); setTimeout(() => { // Cancel button pending state setIsLoading(false); }, 3000); }; return ( ); } example_title: Summarization --- # kaytoo2022/t5_technical_qa_with_react This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0191 - Validation Loss: 2.0546 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.5717 | 2.2548 | 0 | | 2.2680 | 2.1607 | 1 | | 2.1248 | 2.1008 | 2 | | 2.0191 | 2.0546 | 3 | ### Framework versions - Transformers 4.42.4 - TensorFlow 2.17.0 - Datasets 2.20.0 - Tokenizers 0.19.1