--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: results results: [] --- # results This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5933 - Accuracy: 0.8596 - F1: 0.8420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6828 | 1.0 | 182 | 0.7011 | 0.6976 | 0.4393 | | 0.4415 | 2.0 | 364 | 0.4868 | 0.8266 | 0.7933 | | 0.4762 | 3.0 | 546 | 0.5500 | 0.8163 | 0.7798 | | 0.2522 | 4.0 | 728 | 0.5855 | 0.8369 | 0.8139 | | 0.1986 | 5.0 | 910 | 0.5933 | 0.8596 | 0.8420 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2