--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: test args: split metrics: - name: Accuracy type: accuracy value: 0.774 --- # my_awesome_model This model is a fine-tuned version of [](https://huggingface.co/) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Accuracy: 0.774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6145 | 1.0 | 500 | 1.5603 | 0.3475 | | 1.4622 | 2.0 | 1000 | 1.3149 | 0.4 | | 1.2777 | 3.0 | 1500 | 1.2142 | 0.4365 | | 1.1218 | 4.0 | 2000 | 1.0095 | 0.5915 | | 0.8886 | 5.0 | 2500 | 0.8772 | 0.695 | | 0.7649 | 6.0 | 3000 | 0.7803 | 0.7355 | | 0.6818 | 7.0 | 3500 | 0.7220 | 0.7615 | | 0.6268 | 8.0 | 4000 | 0.6870 | 0.773 | | 0.5922 | 9.0 | 4500 | 0.6859 | 0.771 | | 0.5658 | 10.0 | 5000 | 0.6804 | 0.774 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1