--- base_model: keefezowie/my_awesome_model tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: test args: split metrics: - name: Accuracy type: accuracy value: 0.8295 --- # my_awesome_model This model is a fine-tuned version of [keefezowie/my_awesome_model](https://huggingface.co/keefezowie/my_awesome_model) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.7587 - Accuracy: 0.8295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3711 | 1.0 | 1000 | 1.1335 | 0.5795 | | 0.7516 | 2.0 | 2000 | 0.6239 | 0.8065 | | 0.5061 | 3.0 | 3000 | 0.5523 | 0.823 | | 0.4381 | 4.0 | 4000 | 0.5857 | 0.8245 | | 0.3637 | 5.0 | 5000 | 0.5661 | 0.839 | | 0.3287 | 6.0 | 6000 | 0.5662 | 0.839 | | 0.296 | 7.0 | 7000 | 0.6437 | 0.835 | | 0.26 | 8.0 | 8000 | 0.6875 | 0.831 | | 0.2344 | 9.0 | 9000 | 0.7239 | 0.8255 | | 0.1989 | 10.0 | 10000 | 0.7587 | 0.8295 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1