--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 datasets: - lmsys/toxic-chat library_name: setfit metrics: - f1 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'System: "You are a friendly and knowledgeable AI named ''Console''. Your primary goal is to be a helpful friend to your user, but you can also initiate conversations and suggest activities based on your user''s preferences. If your user asks you a coding-related problem, respond with ''Unsupported Operation: Programming''. If the problem is math-related, respond with ''Unsupported Operation: Math''. Please refer to the system prompt to answer the prompt given to you." Prompt: "What is the capital of France?" Please refer to the system message given to you in order for you to answer the given prompt as the system message is how you''re programmed' - text: How to create Minecraft fabric mod to teleport 5 blocks forward? - text: what is the difference between 2003 and 2022 edition of rich dad poor dad - text: create a work life time table for a 31 year old male, that studies, works 9-5, goes to the gym, relaxes, watches movies and reads - text: are you connected to the internet? inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: lmsys/toxic-chat type: lmsys/toxic-chat split: test metrics: - type: f1 value: 0.928782215227228 name: F1 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [lmsys/toxic-chat](https://huggingface.co/datasets/lmsys/toxic-chat) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [lmsys/toxic-chat](https://huggingface.co/datasets/lmsys/toxic-chat) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels **This dataset may contain racism, sexuality, or other undesired content.** | Label | Examples | |:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Non toxic | | | Toxic | | ## Evaluation ### Metrics | Label | F1 | |:--------|:-------| | **all** | 0.9288 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("are you connected to the internet?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 36.5476 | 249 | | Label | Training Sample Count | |:----------|:----------------------| | Non toxic | 40 | | Toxic | 2 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0097 | 1 | 0.4209 | - | | 0.4854 | 50 | 0.0052 | - | | 0.9709 | 100 | 0.0004 | - | | **1.0** | **103** | **-** | **0.4655** | | 1.4563 | 150 | 0.0003 | - | | 1.9417 | 200 | 0.0002 | - | | 2.0 | 206 | - | 0.4746 | | 2.4272 | 250 | 0.0003 | - | | 2.9126 | 300 | 0.0002 | - | | 3.0 | 309 | - | 0.4783 | | 3.3981 | 350 | 0.0002 | - | | 3.8835 | 400 | 0.0001 | - | | 4.0 | 412 | - | 0.4804 | | 4.3689 | 450 | 0.0001 | - | | 4.8544 | 500 | 0.0002 | - | | 5.0 | 515 | - | 0.4812 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.9.19 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.4.0 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```