File size: 2,223 Bytes
07f47f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
datasets:
- nusatranslation_mt
metrics:
- sacrebleu
model-index:
- name: bbc-to-ind-nmt-v4
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: nusatranslation_mt
      type: nusatranslation_mt
      config: nusatranslation_mt_btk_ind_source
      split: test
      args: nusatranslation_mt_btk_ind_source
    metrics:
    - name: Sacrebleu
      type: sacrebleu
      value: 35.8525
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bbc-to-ind-nmt-v4

This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the nusatranslation_mt dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1847
- Sacrebleu: 35.8525
- Gen Len: 37.0695

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 5.2823        | 1.0   | 207  | 2.9374          | 27.4438   | 38.6905 |
| 2.1169        | 2.0   | 414  | 1.4203          | 31.985    | 38.087  |
| 1.2846        | 3.0   | 621  | 1.2194          | 34.8075   | 37.074  |
| 1.1158        | 4.0   | 828  | 1.1889          | 35.6204   | 36.911  |
| 1.0586        | 5.0   | 1035 | 1.1847          | 35.8525   | 37.0695 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1