Divyasreepat commited on
Commit
7f38a17
1 Parent(s): be78497

Update README.md with new model card content

Browse files
Files changed (1) hide show
  1. README.md +177 -16
README.md CHANGED
@@ -1,19 +1,180 @@
1
  ---
2
  library_name: keras-hub
3
  ---
4
- This is a [`Llama` model](https://keras.io/api/keras_hub/models/llama) uploaded using the KerasHub library and can be used with JAX, TensorFlow, and PyTorch backends.
5
- Model config:
6
- * **name:** llama_backbone_1
7
- * **trainable:** True
8
- * **vocabulary_size:** 32000
9
- * **num_layers:** 32
10
- * **num_query_heads:** 32
11
- * **hidden_dim:** 4096
12
- * **intermediate_dim:** 11008
13
- * **rope_max_wavelength:** 10000.0
14
- * **rope_scaling_factor:** 1.0
15
- * **num_key_value_heads:** 32
16
- * **layer_norm_epsilon:** 1e-05
17
- * **dropout:** 0
18
-
19
- This model card has been generated automatically and should be completed by the model author. See [Model Cards documentation](https://huggingface.co/docs/hub/model-cards) for more information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: keras-hub
3
  ---
4
+ ### Model Overview
5
+ Llama 2 is a set of large language models published by Meta. Both pretrained and instruction tuned models are available, and range in size from 7 billion to 70 billion parameters. See the model card below for benchmarks, data sources, and intended use cases.
6
+
7
+ Weights are released under the [Llama 2 Community License](https://ai.meta.com/llama/license/). Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
8
+
9
+ ## Links
10
+
11
+ * [Llama 2 Quickstart Notebook](https://www.kaggle.com/code/matthewdwatson/llama2-quickstart)
12
+ * [Llama 2 API Documentation](https://keras.io/api/keras_hub/models/llama2/)
13
+ * [Llama 2 Model Card & Prompt Formats](https://llama.meta.com/docs/model-cards-and-prompt-formats/other-models/)
14
+ * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
15
+ * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
16
+
17
+ ## Installation
18
+
19
+ Keras and KerasHub can be installed with:
20
+
21
+ ```
22
+ pip install -U -q keras-hub
23
+ pip install -U -q keras>=3
24
+ ```
25
+
26
+ Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
27
+
28
+ ## Presets
29
+
30
+ The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
31
+
32
+ | Preset name | Parameters | Description |
33
+ |-----------------------|------------|---------------|
34
+ |` llama2_7b_en` | 6.74B | 7 billion parameter, 32-layer, base LLaMA 2 model. |
35
+ |` llama2_7b_en_int8` | 6.74B | 7 billion parameter, 32-layer, base LLaMA 2 model with activation and weights quantized to int8. |
36
+ | `llama2_instruct_7b_en` | 6.74B | 7 billion parameter, 32-layer, instruction tuned LLaMA 2 model. |
37
+ | `llama2_instruct_7b_en_int8` | 6.74B | 7 billion parameter, 32-layer, instruction tuned LLaMA 2 model with activation and weights quantized to int8. |
38
+
39
+
40
+ ## Prompts
41
+
42
+ Llama-2 "instruct" models are instruction tuned on turn by turn conversations and should be prompted with examples that precisely match the training data. Specifically, you must alternate user and assistant turns that begin and end with special tokens. New lines do matter. See the following for an example:
43
+
44
+ ```python
45
+ prompt = """<s>[INST] <
46
+
47
+ ### Example Usage
48
+ ```python
49
+ import keras
50
+ import keras_hub
51
+ import numpy as np
52
+ ```
53
+
54
+ Use `generate()` to do text generation.
55
+ ```python
56
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset("llama2_7b_en", dtype="bfloat16")
57
+ llama_lm.generate("What is Keras?", max_length=500)
58
+
59
+ # Generate with batched prompts.
60
+ llama_lm.generate(["What is Keras?", "Give me your best brownie recipe."], max_length=500)
61
+ ```
62
+
63
+ Compile the `generate()` function with a custom sampler.
64
+ ```python
65
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset("llama2_7b_en", dtype="bfloat16")
66
+ llama_lm.compile(sampler="greedy")
67
+ llama_lm.generate("I want to say", max_length=30)
68
+
69
+ llama_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
70
+ llama_lm.generate("I want to say", max_length=30)
71
+ ```
72
+
73
+ Use `generate()` without preprocessing.
74
+ ```python
75
+ prompt = {
76
+ # `1` maps to the start token followed by "I want to say".
77
+ "token_ids": np.array([[1, 306, 864, 304, 1827, 0, 0, 0, 0, 0]] * 2),
78
+ # Use `"padding_mask"` to indicate values that should not be overridden.
79
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
80
+ }
81
+
82
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset(
83
+ "llama2_7b_en",
84
+ preprocessor=None,
85
+ dtype="bfloat16"
86
+ )
87
+ llama_lm.generate(prompt)
88
+ ```
89
+
90
+ Call `fit()` on a single batch.
91
+ ```python
92
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
93
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset("llama2_7b_en", dtype="bfloat16")
94
+ llama_lm.fit(x=features, batch_size=2)
95
+ ```
96
+
97
+ Call `fit()` without preprocessing.
98
+ ```python
99
+ x = {
100
+ "token_ids": np.array([[1, 450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0]] * 2),
101
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0]] * 2),
102
+ }
103
+ y = np.array([[450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0, 0]] * 2)
104
+ sw = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)
105
+
106
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset(
107
+ "llama2_7b_en",
108
+ preprocessor=None,
109
+ dtype="bfloat16"
110
+ )
111
+ llama_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
112
+ ```
113
+
114
+ ## Example Usage with Hugging Face URI
115
+
116
+ ```python
117
+ import keras
118
+ import keras_hub
119
+ import numpy as np
120
+ ```
121
+
122
+ Use `generate()` to do text generation.
123
+ ```python
124
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/llama2_7b_en", dtype="bfloat16")
125
+ llama_lm.generate("What is Keras?", max_length=500)
126
+
127
+ # Generate with batched prompts.
128
+ llama_lm.generate(["What is Keras?", "Give me your best brownie recipe."], max_length=500)
129
+ ```
130
+
131
+ Compile the `generate()` function with a custom sampler.
132
+ ```python
133
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/llama2_7b_en", dtype="bfloat16")
134
+ llama_lm.compile(sampler="greedy")
135
+ llama_lm.generate("I want to say", max_length=30)
136
+
137
+ llama_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
138
+ llama_lm.generate("I want to say", max_length=30)
139
+ ```
140
+
141
+ Use `generate()` without preprocessing.
142
+ ```python
143
+ prompt = {
144
+ # `1` maps to the start token followed by "I want to say".
145
+ "token_ids": np.array([[1, 306, 864, 304, 1827, 0, 0, 0, 0, 0]] * 2),
146
+ # Use `"padding_mask"` to indicate values that should not be overridden.
147
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 0, 0, 0, 0, 0]] * 2),
148
+ }
149
+
150
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset(
151
+ "hf://keras/llama2_7b_en",
152
+ preprocessor=None,
153
+ dtype="bfloat16"
154
+ )
155
+ llama_lm.generate(prompt)
156
+ ```
157
+
158
+ Call `fit()` on a single batch.
159
+ ```python
160
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
161
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset("hf://keras/llama2_7b_en", dtype="bfloat16")
162
+ llama_lm.fit(x=features, batch_size=2)
163
+ ```
164
+
165
+ Call `fit()` without preprocessing.
166
+ ```python
167
+ x = {
168
+ "token_ids": np.array([[1, 450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0]] * 2),
169
+ "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0]] * 2),
170
+ }
171
+ y = np.array([[450, 4996, 17354, 1701, 29916, 12500, 287, 29889, 0, 0]] * 2)
172
+ sw = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2)
173
+
174
+ llama_lm = keras_hub.models.LlamaCausalLM.from_preset(
175
+ "hf://keras/llama2_7b_en",
176
+ preprocessor=None,
177
+ dtype="bfloat16"
178
+ )
179
+ llama_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
180
+ ```