File size: 2,075 Bytes
9a06a5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
tags:
- yolov5
- yolo
- vision
- object-detection
- pytorch
library_name: yolov5
library_version: 7.0.7
inference: false
datasets:
- keremberke/aerial-sheep-object-detection
model-index:
- name: keremberke/yolov5n-aerial-sheep
results:
- task:
type: object-detection
dataset:
type: keremberke/aerial-sheep-object-detection
name: keremberke/aerial-sheep-object-detection
split: validation
metrics:
- type: precision # since [email protected] is not available on hf.co/metrics
value: 0.9546859314717948 # min: 0.0 - max: 1.0
name: [email protected]
---
<div align="center">
<img width="640" alt="keremberke/yolov5n-aerial-sheep" src="https://huggingface.co/keremberke/yolov5n-aerial-sheep/resolve/main/sample_visuals.jpg">
</div>
### How to use
- Install [yolov5](https://github.com/fcakyon/yolov5-pip):
```bash
pip install -U yolov5
```
- Load model and perform prediction:
```python
import yolov5
# load model
model = yolov5.load('keremberke/yolov5n-aerial-sheep')
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.45 # NMS IoU threshold
model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1000 # maximum number of detections per image
# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# perform inference
results = model(img, size=640)
# inference with test time augmentation
results = model(img, augment=True)
# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
```
- Finetune the model on your custom dataset:
```bash
yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5n-aerial-sheep --epochs 10
```
**More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)**
|