File size: 6,293 Bytes
848ec03 f7be917 8be44d0 bb8349c f7be917 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
---
language:
- en
license: apache-2.0
model-index:
- name: lamatama
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 36.35
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 61.12
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.67
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.77
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 2.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/lamatama
name: Open LLM Leaderboard
---
# Model Card: kevin009/lamatama
## Model Description
The `kevin009/lamatama` model is a groundbreaking achievement in the field of language modeling, showcasing the power of leveraging a substantial dataset and state-of-the-art training techniques. This model is designed to push the boundaries of what's possible in natural language understanding and generation.
### Training Details
- **Model Architecture**: The `kevin009/lamatama` model is built upon the architecture and tokenizer of Llama 2, ensuring compatibility and easy integration with various open-source projects.
- **Dataset**: It was pretrained on an impressive 3 trillion tokens, a scale that allows for a deep and nuanced understanding of language.
- **Training Period**: The training process was carried out over 90 days, utilizing 16 A100-40G GPUs, a testament to the model's efficiency and the team's optimization skills.
### Fine-tuning
This specific version of the model has been fine-tuned to excel in chat-based applications. It builds upon the `TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T` model, incorporating learnings and optimizations from HF's Zephyr's training recipe.
- **Initial Phase**: The model was first fine-tuned on a variant of the UltraChat dataset, which is rich in synthetic dialogues generated by ChatGPT.
- **Further Alignment**: Subsequent alignment was achieved using 🤗 TRL's DPOTrainer with the openbmb/UltraFeedback dataset, comprising 64k prompts and model completions ranked by GPT-4.
## How to Use
Ensure you have `transformers>=4.34`. For detailed instructions and updates, check out the GitHub page for `kevin009/lamatama`.
### Installation (for versions <= v4.34)
```bash
pip install git+https://github.com/huggingface/transformers.git
pip install accelerate
```
### Example Usage
Here's a quick guide on using `kevin009/lamatama` for generating text:
```python
import torch
from transformers import pipeline
# Initialize the pipeline
pipe = pipeline("text-generation", model="kevin009/lamatama", torch_dtype=torch.bfloat16, device_map="auto")
# Sample dialogue with templating
messages = [
{"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate"},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"}
]
# Generate prompt and outputs
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## Acknowledgements
This model is a product of collaboration and innovative approaches to language modeling. We extend our thanks to all contributors, as well as the creators of the datasets and training methodologies that made `kevin009/lamatama` a reality.
---
This model card introduces `kevin009/lamatama`, a versatile and powerful language model fine-tuned for chat applications, demonstrating exceptional understanding and generation capabilities.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kevin009__lamatama)
| Metric |Value|
|---------------------------------|----:|
|Avg. |37.15|
|AI2 Reasoning Challenge (25-Shot)|36.35|
|HellaSwag (10-Shot) |61.12|
|MMLU (5-Shot) |24.72|
|TruthfulQA (0-shot) |37.67|
|Winogrande (5-shot) |60.77|
|GSM8k (5-shot) | 2.27|
|