File size: 4,903 Bytes
f1d27aa
 
d3e5cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d27aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e5cfa
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
license: apache-2.0
model-index:
- name: llamaRAGdrama
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 72.01
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.83
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.5
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 70.24
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 86.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
      name: Open LLM Leaderboard
---
It remain factual and reliable even in dramatic situations.

---

### Model Card for kevin009/llamaRAGdrama

#### Model Details
- **Model Name:** kevin009/llamaRAGdrama
- **Model Type:** Fine-tuned for Q&A, RAG.
- **Fine-tuning Objective:** Synthesis text content in Q&A, RAG scenarios.

#### Intended Use
- **Applications:** RAG, Q&A

#### Training Data
- **Sources:** Includes a diverse dataset of dramatic texts, enriched with factual databases and reliable sources to train the model on generating content that remains true to real-world facts.
- **Preprocessing:** In addition to removing non-content text, data was annotated to distinguish between purely creative elements and those that require factual accuracy, ensuring a balanced training approach.

#### How to Use
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("kevin009/llamaRAGdrama")
model = AutoModelForCausalLM.from_pretrained("kevin009/llamaRAGdrama")

input_text = "Enter your prompt here"
input_tokens = tokenizer.encode(input_text, return_tensors='pt')
output_tokens = model.generate(input_tokens, max_length=100, num_return_sequences=1, temperature=0.9)
generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)

print(generated_text)
```
Replace `"Enter your prompt here"` with your starting text. Adjust `temperature` for creativity level.

#### Limitations and Biases
- **Content Limitation:** While designed to be truthful, It may not be considered safe.
- **Biases:** It may remain biases and inaccurate.

#### Licensing and Attribution
- **License:** Apache-2.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kevin009__llamaRAGdrama)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.65|
|AI2 Reasoning Challenge (25-Shot)|72.01|
|HellaSwag (10-Shot)              |88.83|
|MMLU (5-Shot)                    |64.50|
|TruthfulQA (0-shot)              |70.24|
|Winogrande (5-shot)              |86.66|
|GSM8k (5-shot)                   |65.66|