File size: 2,252 Bytes
d48d8b5 7f2200f d48d8b5 7f2200f d48d8b5 9acda82 d48d8b5 7f2200f 5b79fbd c52e8f2 2baaa80 4ecb5f0 b6067e8 9acda82 d48d8b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_keras_callback
model-index:
- name: khadija69/debertav3_ASE_kgl_BIES2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# khadija69/debertav3_ASE_kgl_BIES2
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.6418
- Train Accuracy: 0.6024
- Validation Loss: 0.7774
- Validation Accuracy: 0.5724
- Epoch: 6
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 4000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:|
| 1.1865 | 0.4781 | 0.9186 | 0.5364 | 0 |
| 0.8841 | 0.5450 | 0.8210 | 0.5555 | 1 |
| 0.7972 | 0.5688 | 0.7997 | 0.5624 | 2 |
| 0.7395 | 0.5818 | 0.7777 | 0.5682 | 3 |
| 0.7011 | 0.5931 | 0.7836 | 0.5708 | 4 |
| 0.6760 | 0.5998 | 0.7845 | 0.5696 | 5 |
| 0.6418 | 0.6024 | 0.7774 | 0.5724 | 6 |
### Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.19.2
- Tokenizers 0.19.1
|