khathathorn commited on
Commit
03598c2
1 Parent(s): 8e42779

Upload 10 files

Browse files
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:1K<n<10K
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
11
+ widget:
12
+ - source_sentence: อยากกินของหวานที่มีรสส้ม
13
+ sentences:
14
+ - อยากกินของหวานที่มีกลิ่นส้ม
15
+ - อยากได้ของหวานที่มีมะนาวที่มีรสชาติหวาน
16
+ - แนะนำเมนูของหวานที่ใส่ผลไม้และน้ำผึ้งด้วยหน่อย
17
+ - source_sentence: อยากกินพายที่ใส่ผลไม้สด
18
+ sentences:
19
+ - อยากทานของหวานที่เป็นพายที่มีเนื้อผลไม้
20
+ - อยากกินของหวานที่มีทั้งกาแฟและช็อคโกแลต
21
+ - แนะนำเมนูมูสช็อกโกแลตที่ไม่หวานมาก
22
+ - source_sentence: อยากกินของหวานที่มีแครอท
23
+ sentences:
24
+ - ของหวานที่มีแครอทและรสหวานอมเปรี้ยวหน่อย
25
+ - อยากกินของหวานที่มีรสชาติมะม่วงและมะนาว
26
+ - อยากกินของหวานที่มีรสชาติคล้ายผลไม้
27
+ - source_sentence: อยากกินขนมอบไส้แอปเปิล
28
+ sentences:
29
+ - เมนูของหวาน อยากกินขนมอบไส้ผลไม้หวานๆ
30
+ - อยากกินของหวานสตรอว์เบอร์รี่ไม่หวานมาก
31
+ - อยากกินของหวานที่มีรสชาติหวานละมุนจากถั่ว
32
+ - source_sentence: อยากกินของหวานที่มีถั่ว
33
+ sentences:
34
+ - อยากทานของหวานที่มีส่วนผสมของถั่ว
35
+ - อยากกินพายหวานที่ผสมเครื่องเทศอบอุ่นใจ
36
+ - มีเมนูของหวานที่เป็นเชอร์เบทรสอะไรก็ได้มั้ย
37
+ pipeline_tag: sentence-similarity
38
+ ---
39
+
40
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
49
+ - **Maximum Sequence Length:** 128 tokens
50
+ - **Output Dimensionality:** 768 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("sentence_transformers_model_id")
87
+ # Run inference
88
+ sentences = [
89
+ 'อยากกินของหวานที่มีถั่ว',
90
+ 'อยากทานของหวานที่มีส่วนผสมของถั่ว',
91
+ 'อยากกินพายหวานที่ผสมเครื่องเทศอบอุ่นใจ',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+
146
+ * Size: 3,175 training samples
147
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
148
+ * Approximate statistics based on the first 1000 samples:
149
+ | | sentence_0 | sentence_1 | label |
150
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
151
+ | type | string | string | float |
152
+ | details | <ul><li>min: 2 tokens</li><li>mean: 15.46 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 30.21 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
153
+ * Samples:
154
+ | sentence_0 | sentence_1 | label |
155
+ |:---------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|:-----------------|
156
+ | <code>อยากกินขนมที่ทำจากช็อกโกแลตและรสชาติเหมือนกาแฟ</code> | <code>เมนูของหวาน เมนู Mocha มีวัตถุดิบช็อกโกแลต</code> | <code>1.0</code> |
157
+ | <code>อยากกินของหวานที่มีรสพีชและมีถั่วด้วย</code> | <code>เมนูของหวาน เมนู Peach Praline Semifreddo with Amaretti มีวัตถุดิบอัลมอนด์ อัลมอนด์ พีช อัลมอนด์ พีช</code> | <code>1.0</code> |
158
+ | <code>มีเมนูของหวานที่หอมละมุนทั้งกลิ่นผลไม้และเครื่องเทศมั้ย</code> | <code>เมนูของหวาน เมนู Peach-Cherry Lambic Charlotte มีวัตถุดิบเชอร์รีเชอร์รีน้ำผึ้งพีชมะนาวมะนาว</code> | <code>1.0</code> |
159
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
160
+ ```json
161
+ {
162
+ "scale": 20.0,
163
+ "similarity_fct": "cos_sim"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `per_device_train_batch_size`: 16
171
+ - `per_device_eval_batch_size`: 16
172
+ - `num_train_epochs`: 20
173
+ - `multi_dataset_batch_sampler`: round_robin
174
+
175
+ #### All Hyperparameters
176
+ <details><summary>Click to expand</summary>
177
+
178
+ - `overwrite_output_dir`: False
179
+ - `do_predict`: False
180
+ - `prediction_loss_only`: True
181
+ - `per_device_train_batch_size`: 16
182
+ - `per_device_eval_batch_size`: 16
183
+ - `per_gpu_train_batch_size`: None
184
+ - `per_gpu_eval_batch_size`: None
185
+ - `gradient_accumulation_steps`: 1
186
+ - `eval_accumulation_steps`: None
187
+ - `learning_rate`: 5e-05
188
+ - `weight_decay`: 0.0
189
+ - `adam_beta1`: 0.9
190
+ - `adam_beta2`: 0.999
191
+ - `adam_epsilon`: 1e-08
192
+ - `max_grad_norm`: 1
193
+ - `num_train_epochs`: 20
194
+ - `max_steps`: -1
195
+ - `lr_scheduler_type`: linear
196
+ - `lr_scheduler_kwargs`: {}
197
+ - `warmup_ratio`: 0.0
198
+ - `warmup_steps`: 0
199
+ - `log_level`: passive
200
+ - `log_level_replica`: warning
201
+ - `log_on_each_node`: True
202
+ - `logging_nan_inf_filter`: True
203
+ - `save_safetensors`: True
204
+ - `save_on_each_node`: False
205
+ - `save_only_model`: False
206
+ - `no_cuda`: False
207
+ - `use_cpu`: False
208
+ - `use_mps_device`: False
209
+ - `seed`: 42
210
+ - `data_seed`: None
211
+ - `jit_mode_eval`: False
212
+ - `use_ipex`: False
213
+ - `bf16`: False
214
+ - `fp16`: False
215
+ - `fp16_opt_level`: O1
216
+ - `half_precision_backend`: auto
217
+ - `bf16_full_eval`: False
218
+ - `fp16_full_eval`: False
219
+ - `tf32`: None
220
+ - `local_rank`: 0
221
+ - `ddp_backend`: None
222
+ - `tpu_num_cores`: None
223
+ - `tpu_metrics_debug`: False
224
+ - `debug`: []
225
+ - `dataloader_drop_last`: False
226
+ - `dataloader_num_workers`: 0
227
+ - `dataloader_prefetch_factor`: None
228
+ - `past_index`: -1
229
+ - `disable_tqdm`: False
230
+ - `remove_unused_columns`: True
231
+ - `label_names`: None
232
+ - `load_best_model_at_end`: False
233
+ - `ignore_data_skip`: False
234
+ - `fsdp`: []
235
+ - `fsdp_min_num_params`: 0
236
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
+ - `fsdp_transformer_layer_cls_to_wrap`: None
238
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
239
+ - `deepspeed`: None
240
+ - `label_smoothing_factor`: 0.0
241
+ - `optim`: adamw_torch
242
+ - `optim_args`: None
243
+ - `adafactor`: False
244
+ - `group_by_length`: False
245
+ - `length_column_name`: length
246
+ - `ddp_find_unused_parameters`: None
247
+ - `ddp_bucket_cap_mb`: None
248
+ - `ddp_broadcast_buffers`: False
249
+ - `dataloader_pin_memory`: True
250
+ - `dataloader_persistent_workers`: False
251
+ - `skip_memory_metrics`: True
252
+ - `use_legacy_prediction_loop`: False
253
+ - `push_to_hub`: False
254
+ - `resume_from_checkpoint`: None
255
+ - `hub_model_id`: None
256
+ - `hub_strategy`: every_save
257
+ - `hub_private_repo`: False
258
+ - `hub_always_push`: False
259
+ - `gradient_checkpointing`: False
260
+ - `gradient_checkpointing_kwargs`: None
261
+ - `include_inputs_for_metrics`: False
262
+ - `fp16_backend`: auto
263
+ - `push_to_hub_model_id`: None
264
+ - `push_to_hub_organization`: None
265
+ - `mp_parameters`:
266
+ - `auto_find_batch_size`: False
267
+ - `full_determinism`: False
268
+ - `torchdynamo`: None
269
+ - `ray_scope`: last
270
+ - `ddp_timeout`: 1800
271
+ - `torch_compile`: False
272
+ - `torch_compile_backend`: None
273
+ - `torch_compile_mode`: None
274
+ - `dispatch_batches`: None
275
+ - `split_batches`: None
276
+ - `include_tokens_per_second`: False
277
+ - `include_num_input_tokens_seen`: False
278
+ - `neftune_noise_alpha`: None
279
+ - `optim_target_modules`: None
280
+ - `batch_sampler`: batch_sampler
281
+ - `multi_dataset_batch_sampler`: round_robin
282
+
283
+ </details>
284
+
285
+ ### Training Logs
286
+ | Epoch | Step | Training Loss |
287
+ |:-------:|:----:|:-------------:|
288
+ | 2.5126 | 500 | 1.2242 |
289
+ | 5.0251 | 1000 | 0.4793 |
290
+ | 7.5377 | 1500 | 0.1693 |
291
+ | 10.0503 | 2000 | 0.0658 |
292
+ | 12.5628 | 2500 | 0.025 |
293
+ | 15.0754 | 3000 | 0.0107 |
294
+ | 17.5879 | 3500 | 0.0051 |
295
+
296
+
297
+ ### Framework Versions
298
+ - Python: 3.10.13
299
+ - Sentence Transformers: 3.0.0
300
+ - Transformers: 4.39.3
301
+ - PyTorch: 2.1.2
302
+ - Accelerate: 0.29.3
303
+ - Datasets: 2.18.0
304
+ - Tokenizers: 0.15.2
305
+
306
+ ## Citation
307
+
308
+ ### BibTeX
309
+
310
+ #### Sentence Transformers
311
+ ```bibtex
312
+ @inproceedings{reimers-2019-sentence-bert,
313
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
314
+ author = "Reimers, Nils and Gurevych, Iryna",
315
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
316
+ month = "11",
317
+ year = "2019",
318
+ publisher = "Association for Computational Linguistics",
319
+ url = "https://arxiv.org/abs/1908.10084",
320
+ }
321
+ ```
322
+
323
+ #### MultipleNegativesRankingLoss
324
+ ```bibtex
325
+ @misc{henderson2017efficient,
326
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
327
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
328
+ year={2017},
329
+ eprint={1705.00652},
330
+ archivePrefix={arXiv},
331
+ primaryClass={cs.CL}
332
+ }
333
+ ```
334
+
335
+ <!--
336
+ ## Glossary
337
+
338
+ *Clearly define terms in order to be accessible across audiences.*
339
+ -->
340
+
341
+ <!--
342
+ ## Model Card Authors
343
+
344
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
345
+ -->
346
+
347
+ <!--
348
+ ## Model Card Contact
349
+
350
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
351
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.39.3",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43844c2e0acba4e3d57dc3fa7ec5332da73a5f306323ed856e0ee8e357e7fa74
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }