Start-GPT commited on
Commit
e7f711b
1 Parent(s): cd5f510

Create llm.py

Browse files
Files changed (1) hide show
  1. llm.py +103 -0
llm.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ class AutofixCodeAILLModel(AutoModelForCausalLM):
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
7
+ self.decoder = AutoDecoder(self.config.decoder_hidden_size, self.config.decoder_num_layers)
8
+
9
+ @property
10
+ def decoder(self):
11
+ return self._decoder
12
+
13
+ @decoder.setter
14
+ def decoder(self, value):
15
+ self._decoder = value
16
+
17
+ class AutoDecoder(torch.nn.Module):
18
+ def __init__(self, hidden_size, num_layers):
19
+ super().__init__()
20
+ self.layers = torch.nn.ModuleList([torch.nn.TransformerEncoderLayer(d_model=hidden_size, nhead=8, dim_feedforward=hidden_size, dropout=0.1) for _ in range(num_layers)])
21
+
22
+ def forward(self, x):
23
+ for layer in self.layers:
24
+ x = layer(x)
25
+ return x
26
+
27
+ # Load the pre-trained model and tokenizer
28
+ model_name_or_path = "autofixcodeai-base"
29
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
30
+ ll_model = AutofixCodeAILLModel.from_pretrained(model_name_or_path)
31
+
32
+ # Define the custom dataset class for your AutofixCodeAI model
33
+ class CodeFixDataset(torch.utils.data.Dataset):
34
+ def __init__(self, code_snippets, fix_snippets):
35
+ self.code_snippets = code_snippets
36
+ self.fix_snippets = fix_snippets
37
+
38
+ def __len__(self):
39
+ return len(self.code_snippets)
40
+
41
+ def __getitem__(self, idx):
42
+ code = self.code_snippets[idx]["code"]
43
+ fix = self.fix_snippets[idx]["fix"]
44
+ input_ids = tokenizer.encode(code, max_length=512, return_tensors="pt", truncation=True)
45
+ attention_mask = tokenizer.encode(fix, max_length=512, return_tensors="pt", truncation=True, add_special_tokens=False)
46
+ labels = torch.tensor(tokenizer.encode(fix, return_tensors="pt", add_special_tokens=False)).flatten()
47
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
48
+
49
+ # Load the dataset and create a data loader
50
+ dataset = CodeFixDataset(code_snippets, fix_snippets)
51
+ data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)
52
+
53
+ # Define the custom trainer class for your AutofixCodeAI model
54
+ class Trainer(torch.nn.Module):
55
+ def __init__(self, model, data_loader, device="cuda"):
56
+ super().__init__()
57
+ self.model = model
58
+ self.data_loader = data_loader
59
+ self.device = device
60
+
61
+ def forward(self, input_ids, attention_mask, labels):
62
+ output = self.model(input_ids=input_ids, attention_mask=attention_mask)
63
+ loss = self.loss_fn(output, labels)
64
+ return loss
65
+
66
+ @property
67
+ def loss_fn(self):
68
+ return torch.nn.CrossEntropyLoss()
69
+
70
+ # Train the model using the custom trainer class
71
+ trainer = Trainer(ll_model, data_loader, device="cuda")
72
+ for epoch in range(5):
73
+ trainer.model.train()
74
+ total_loss = 0
75
+ for batch in data_loader:
76
+ input_ids = batch["input_ids"].to(device)
77
+ attention_mask = batch["attention_mask"].to(device)
78
+ labels = batch["labels"].to(device)
79
+ loss = trainer(input_ids, attention_mask, labels).mean()
80
+ optimizer = torch.optim.Adam(trainer.model.parameters(), lr=1e-4)
81
+ optimizer.zero_grad()
82
+ loss.backward()
83
+ optimizer.step()
84
+ total_loss += loss.item()
85
+ print(f"Epoch {epoch+1}, Loss: {total_loss / len(data_loader)}")
86
+
87
+ # Evaluate the model using the custom trainer class
88
+ trainer.model.eval()
89
+ test_loss = 0
90
+ correct = 0
91
+ with torch.no_grad():
92
+ for batch in data_loader:
93
+ input_ids = batch["input_ids"].to(device)
94
+ attention_mask = batch["attention_mask"].to(device)
95
+ labels = batch["labels"].to(device)
96
+ output = trainer(input_ids, attention_mask, labels).mean()
97
+ loss = self.loss_fn(output, labels)
98
+ test_loss += loss.item()
99
+ _, predicted = torch.max(output, 1)
100
+ correct += (predicted == labels).sum().item()
101
+
102
+ accuracy = correct / len(data_loader.dataset)
103
+ print(f"Test Loss: {test_loss / len(data_loader)}, Accuracy: {accuracy:.2f}")