kiipliwooke
commited on
Commit
•
7334630
1
Parent(s):
8d04dd6
End of training
Browse files- README.md +91 -0
- config.json +110 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: indolem/indobert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- id_nergrit_corpus
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
- accuracy
|
13 |
+
model-index:
|
14 |
+
- name: KIPBERT
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Token Classification
|
18 |
+
type: token-classification
|
19 |
+
dataset:
|
20 |
+
name: id_nergrit_corpus
|
21 |
+
type: id_nergrit_corpus
|
22 |
+
config: ner
|
23 |
+
split: test
|
24 |
+
args: ner
|
25 |
+
metrics:
|
26 |
+
- name: Precision
|
27 |
+
type: precision
|
28 |
+
value: 0.8057702776265651
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.8325084364454444
|
32 |
+
- name: F1
|
33 |
+
type: f1
|
34 |
+
value: 0.8189211618257262
|
35 |
+
- name: Accuracy
|
36 |
+
type: accuracy
|
37 |
+
value: 0.9503167154516874
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# KIPBERT
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the id_nergrit_corpus dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1731
|
48 |
+
- Precision: 0.8058
|
49 |
+
- Recall: 0.8325
|
50 |
+
- F1: 0.8189
|
51 |
+
- Accuracy: 0.9503
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 16
|
72 |
+
- eval_batch_size: 16
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 2
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.4926 | 1.0 | 784 | 0.1810 | 0.7860 | 0.8172 | 0.8013 | 0.9450 |
|
83 |
+
| 0.1627 | 2.0 | 1568 | 0.1731 | 0.8058 | 0.8325 | 0.8189 | 0.9503 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.33.2
|
89 |
+
- Pytorch 2.0.1+cu118
|
90 |
+
- Datasets 2.14.5
|
91 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "indolem/indobert-base-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_ids": 0,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "B-CRD",
|
15 |
+
"1": "B-DAT",
|
16 |
+
"2": "B-EVT",
|
17 |
+
"3": "B-FAC",
|
18 |
+
"4": "B-GPE",
|
19 |
+
"5": "B-LAN",
|
20 |
+
"6": "B-LAW",
|
21 |
+
"7": "B-LOC",
|
22 |
+
"8": "B-MON",
|
23 |
+
"9": "B-NOR",
|
24 |
+
"10": "B-ORD",
|
25 |
+
"11": "B-ORG",
|
26 |
+
"12": "B-PER",
|
27 |
+
"13": "B-PRC",
|
28 |
+
"14": "B-PRD",
|
29 |
+
"15": "B-QTY",
|
30 |
+
"16": "B-REG",
|
31 |
+
"17": "B-TIM",
|
32 |
+
"18": "B-WOA",
|
33 |
+
"19": "I-CRD",
|
34 |
+
"20": "I-DAT",
|
35 |
+
"21": "I-EVT",
|
36 |
+
"22": "I-FAC",
|
37 |
+
"23": "I-GPE",
|
38 |
+
"24": "I-LAN",
|
39 |
+
"25": "I-LAW",
|
40 |
+
"26": "I-LOC",
|
41 |
+
"27": "I-MON",
|
42 |
+
"28": "I-NOR",
|
43 |
+
"29": "I-ORD",
|
44 |
+
"30": "I-ORG",
|
45 |
+
"31": "I-PER",
|
46 |
+
"32": "I-PRC",
|
47 |
+
"33": "I-PRD",
|
48 |
+
"34": "I-QTY",
|
49 |
+
"35": "I-REG",
|
50 |
+
"36": "I-TIM",
|
51 |
+
"37": "I-WOA",
|
52 |
+
"38": "O"
|
53 |
+
},
|
54 |
+
"initializer_range": 0.02,
|
55 |
+
"intermediate_size": 3072,
|
56 |
+
"label2id": {
|
57 |
+
"B-CRD": 0,
|
58 |
+
"B-DAT": 1,
|
59 |
+
"B-EVT": 2,
|
60 |
+
"B-FAC": 3,
|
61 |
+
"B-GPE": 4,
|
62 |
+
"B-LAN": 5,
|
63 |
+
"B-LAW": 6,
|
64 |
+
"B-LOC": 7,
|
65 |
+
"B-MON": 8,
|
66 |
+
"B-NOR": 9,
|
67 |
+
"B-ORD": 10,
|
68 |
+
"B-ORG": 11,
|
69 |
+
"B-PER": 12,
|
70 |
+
"B-PRC": 13,
|
71 |
+
"B-PRD": 14,
|
72 |
+
"B-QTY": 15,
|
73 |
+
"B-REG": 16,
|
74 |
+
"B-TIM": 17,
|
75 |
+
"B-WOA": 18,
|
76 |
+
"I-CRD": 19,
|
77 |
+
"I-DAT": 20,
|
78 |
+
"I-EVT": 21,
|
79 |
+
"I-FAC": 22,
|
80 |
+
"I-GPE": 23,
|
81 |
+
"I-LAN": 24,
|
82 |
+
"I-LAW": 25,
|
83 |
+
"I-LOC": 26,
|
84 |
+
"I-MON": 27,
|
85 |
+
"I-NOR": 28,
|
86 |
+
"I-ORD": 29,
|
87 |
+
"I-ORG": 30,
|
88 |
+
"I-PER": 31,
|
89 |
+
"I-PRC": 32,
|
90 |
+
"I-PRD": 33,
|
91 |
+
"I-QTY": 34,
|
92 |
+
"I-REG": 35,
|
93 |
+
"I-TIM": 36,
|
94 |
+
"I-WOA": 37,
|
95 |
+
"O": 38
|
96 |
+
},
|
97 |
+
"layer_norm_eps": 1e-12,
|
98 |
+
"max_position_embeddings": 512,
|
99 |
+
"model_type": "bert",
|
100 |
+
"num_attention_heads": 12,
|
101 |
+
"num_hidden_layers": 12,
|
102 |
+
"output_past": true,
|
103 |
+
"pad_token_id": 0,
|
104 |
+
"position_embedding_type": "absolute",
|
105 |
+
"torch_dtype": "float32",
|
106 |
+
"transformers_version": "4.33.2",
|
107 |
+
"type_vocab_size": 2,
|
108 |
+
"use_cache": true,
|
109 |
+
"vocab_size": 31923
|
110 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16cb61ed2819f383cd80d4de6415f759f600cdaf79d1192ab6451f36ccd7f2ca
|
3 |
+
size 440058153
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 1000000000000000019884624838656,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f9ad691e629d7449398cb6775fc0ddfd674ca5d2dfe9313bf9cc6f2ae76fc3a
|
3 |
+
size 4027
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|