--- language: - zh license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Medium Zh - Kimas results: [] --- # Whisper Medium Zh - Kimas This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0635 - Wer: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1461 | 0.28 | 1000 | 0.1406 | 100.0 | | 0.0803 | 0.57 | 2000 | 0.1181 | 100.0 | | 0.0715 | 0.85 | 3000 | 0.1039 | 100.0 | | 0.0255 | 1.14 | 4000 | 0.0925 | 100.0207 | | 0.0199 | 1.42 | 5000 | 0.0810 | 100.0 | | 0.027 | 1.7 | 6000 | 0.0767 | 100.0207 | | 0.0328 | 1.99 | 7000 | 0.0706 | 100.0 | | 0.0026 | 2.27 | 8000 | 0.0700 | 100.0 | | 0.0082 | 2.56 | 9000 | 0.0646 | 100.0 | | 0.0099 | 2.84 | 10000 | 0.0635 | 100.0 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 1.12.1 - Datasets 2.14.6 - Tokenizers 0.14.1