Added eval scripts.
Browse files- run_eval.sh +6 -0
- run_eval_whisper_streaming.py +150 -0
run_eval.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_eval_whisper_streaming.py \
|
2 |
+
--model_id="kimbochen/whisper-small-zh-tw" \
|
3 |
+
--config="zh-TW" \
|
4 |
+
--device=0 \
|
5 |
+
--max_eval_samples=64 \
|
6 |
+
--language="zh"
|
run_eval_whisper_streaming.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
from transformers import pipeline
|
4 |
+
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
|
5 |
+
from datasets import load_dataset, Audio
|
6 |
+
import evaluate
|
7 |
+
|
8 |
+
wer_metric = evaluate.load("wer")
|
9 |
+
|
10 |
+
|
11 |
+
def is_target_text_in_range(ref):
|
12 |
+
if ref.strip() == "ignore time segment in scoring":
|
13 |
+
return False
|
14 |
+
else:
|
15 |
+
return ref.strip() != ""
|
16 |
+
|
17 |
+
|
18 |
+
def get_text(sample):
|
19 |
+
if "text" in sample:
|
20 |
+
return sample["text"]
|
21 |
+
elif "sentence" in sample:
|
22 |
+
return sample["sentence"]
|
23 |
+
elif "normalized_text" in sample:
|
24 |
+
return sample["normalized_text"]
|
25 |
+
elif "transcript" in sample:
|
26 |
+
return sample["transcript"]
|
27 |
+
elif "transcription" in sample:
|
28 |
+
return sample["transcription"]
|
29 |
+
else:
|
30 |
+
raise ValueError(
|
31 |
+
f"Expected transcript column of either 'text', 'sentence', 'normalized_text' or 'transcript'. Got sample of "
|
32 |
+
".join{sample.keys()}. Ensure a text column name is present in the dataset."
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
whisper_norm = BasicTextNormalizer()
|
37 |
+
|
38 |
+
|
39 |
+
def normalise(batch):
|
40 |
+
batch["norm_text"] = whisper_norm(get_text(batch))
|
41 |
+
return batch
|
42 |
+
|
43 |
+
|
44 |
+
def data(dataset):
|
45 |
+
for i, item in enumerate(dataset):
|
46 |
+
yield {**item["audio"], "reference": item["norm_text"]}
|
47 |
+
|
48 |
+
|
49 |
+
def main(args):
|
50 |
+
batch_size = args.batch_size
|
51 |
+
whisper_asr = pipeline(
|
52 |
+
"automatic-speech-recognition", model=args.model_id, device=args.device
|
53 |
+
)
|
54 |
+
|
55 |
+
whisper_asr.model.config.forced_decoder_ids = (
|
56 |
+
whisper_asr.tokenizer.get_decoder_prompt_ids(
|
57 |
+
language=args.language, task="transcribe"
|
58 |
+
)
|
59 |
+
)
|
60 |
+
|
61 |
+
dataset = load_dataset(
|
62 |
+
args.dataset,
|
63 |
+
args.config,
|
64 |
+
split=args.split,
|
65 |
+
streaming=args.streaming,
|
66 |
+
use_auth_token=True,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Only uncomment for debugging
|
70 |
+
dataset = dataset.take(args.max_eval_samples)
|
71 |
+
|
72 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
73 |
+
dataset = dataset.map(normalise)
|
74 |
+
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
|
75 |
+
|
76 |
+
predictions = []
|
77 |
+
references = []
|
78 |
+
|
79 |
+
# run streamed inference
|
80 |
+
for out in whisper_asr(data(dataset), batch_size=batch_size):
|
81 |
+
predictions.append(whisper_norm(out["text"]))
|
82 |
+
references.append(out["reference"][0])
|
83 |
+
|
84 |
+
wer = wer_metric.compute(references=references, predictions=predictions)
|
85 |
+
wer = round(100 * wer, 2)
|
86 |
+
|
87 |
+
print("WER:", wer)
|
88 |
+
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
parser = argparse.ArgumentParser()
|
92 |
+
|
93 |
+
parser.add_argument(
|
94 |
+
"--model_id",
|
95 |
+
type=str,
|
96 |
+
required=True,
|
97 |
+
help="Model identifier. Should be loadable with 🤗 Transformers",
|
98 |
+
)
|
99 |
+
parser.add_argument(
|
100 |
+
"--dataset",
|
101 |
+
type=str,
|
102 |
+
default="mozilla-foundation/common_voice_11_0",
|
103 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
104 |
+
)
|
105 |
+
parser.add_argument(
|
106 |
+
"--config",
|
107 |
+
type=str,
|
108 |
+
required=True,
|
109 |
+
help="Config of the dataset. *E.g.* `'en'` for the English split of Common Voice",
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--split",
|
113 |
+
type=str,
|
114 |
+
default="test",
|
115 |
+
help="Split of the dataset. *E.g.* `'test'`",
|
116 |
+
)
|
117 |
+
|
118 |
+
parser.add_argument(
|
119 |
+
"--device",
|
120 |
+
type=int,
|
121 |
+
default=-1,
|
122 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--batch_size",
|
126 |
+
type=int,
|
127 |
+
default=16,
|
128 |
+
help="Number of samples to go through each streamed batch.",
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--max_eval_samples",
|
132 |
+
type=int,
|
133 |
+
default=None,
|
134 |
+
help="Number of samples to be evaluated. Put a lower number e.g. 64 for testing this script.",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--streaming",
|
138 |
+
type=bool,
|
139 |
+
default=True,
|
140 |
+
help="Choose whether you'd like to download the entire dataset or stream it during the evaluation.",
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--language",
|
144 |
+
type=str,
|
145 |
+
required=True,
|
146 |
+
help="Two letter language code for the transcription language, e.g. use 'en' for English.",
|
147 |
+
)
|
148 |
+
args = parser.parse_args()
|
149 |
+
|
150 |
+
main(args)
|