--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-large-xls-r-1b-Indonesian results: - task: type: automatic-speech-recognition # Required. Example: automatic-speech-recognition name: Speech Recognition # Optional. Example: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: Common Voice id # Required. Example: Common Voice zh-CN args: id # Optional. Example: zh-CN metrics: - type: wer # Required. Example: wer value: 45.51 # Required. Example: 20.90 name: Test WER # Optional. Example: Test WER - type: cer # Required. Example: wer value: 16.43 # Required. Example: 20.90 name: Test CER # Optional. Example: Test WER --- # wav2vec2-large-xls-r-1b-Indonesian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9550 - Wer: 0.4551 - Cer: 0.1643 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.663 | 7.69 | 200 | 0.7898 | 0.6039 | 0.1848 | | 0.7424 | 15.38 | 400 | 1.0215 | 0.5615 | 0.1924 | | 0.4494 | 23.08 | 600 | 1.0901 | 0.5249 | 0.1932 | | 0.5075 | 30.77 | 800 | 1.1013 | 0.5079 | 0.1935 | | 0.4671 | 38.46 | 1000 | 1.1034 | 0.4916 | 0.1827 | | 0.1928 | 46.15 | 1200 | 0.9550 | 0.4551 | 0.1643 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0