File size: 3,561 Bytes
c34340f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2f95cd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
library_name: transformers
license: apache-2.0
base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408
tags:
- generated_from_trainer
model-index:
- name: outputs/mistral-nemo-webnovels
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408
tokenizer_type: AutoTokenizer


load_in_8bit: false
load_in_4bit: false
strict: false


chat_template: chatml
datasets:
  - path: falche/paradox_test_set_200k_sharegpt
    type: sharegpt
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/mistral-nemo-webnovels

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

use_wandb: true
wandb_project: mistral-nemo-webnovels
wandb_entity: augmxnt
wandb_name: mi300x-cyberagent_mistral_nemo_webnovels-fft-dsz3

gradient_accumulation_steps: 1
micro_batch_size: 8
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

```

</details><br>

# outputs/mistral-nemo-webnovels

This model is a fine-tuned version of [cyberagent/Mistral-Nemo-Japanese-Instruct-2408](https://huggingface.co/cyberagent/Mistral-Nemo-Japanese-Instruct-2408) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6891

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.6086        | 0.0008 | 1    | 2.5794          |
| 1.8703        | 0.5    | 615  | 1.8224          |
| 1.7873        | 1.0    | 1230 | 1.7534          |
| 1.6708        | 1.4976 | 1845 | 1.7214          |
| 1.6567        | 1.9976 | 2460 | 1.6919          |
| 1.501         | 2.4951 | 3075 | 1.6984          |
| 1.5237        | 2.9951 | 3690 | 1.6891          |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0+rocm6.2
- Datasets 3.0.1
- Tokenizers 0.20.1

### Training Infra
Compute sponsored by []HotAisle](https://huggingface.co/hotaisle) on an 8 x MI300X node. See the [WandB Run Logs](https://wandb.ai/augmxnt/mistral-nemo-webnovels) for additional details.