--- library_name: transformers license: apache-2.0 base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408 tags: - generated_from_trainer model-index: - name: outputs/mistral-nemo-webnovels results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: cyberagent/Mistral-Nemo-Japanese-Instruct-2408 tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: falche/paradox_test_set_200k_sharegpt type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/mistral-nemo-webnovels sequence_len: 8192 sample_packing: true pad_to_sequence_len: true use_wandb: true wandb_project: mistral-nemo-webnovels wandb_entity: augmxnt wandb_name: mi300x-cyberagent_mistral_nemo_webnovels-fft-dsz3 gradient_accumulation_steps: 1 micro_batch_size: 8 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: linear learning_rate: 8e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 2 eval_table_size: saves_per_epoch: 1 debug: deepspeed: axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# outputs/mistral-nemo-webnovels This model is a fine-tuned version of [cyberagent/Mistral-Nemo-Japanese-Instruct-2408](https://huggingface.co/cyberagent/Mistral-Nemo-Japanese-Instruct-2408) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6891 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6086 | 0.0008 | 1 | 2.5794 | | 1.8703 | 0.5 | 615 | 1.8224 | | 1.7873 | 1.0 | 1230 | 1.7534 | | 1.6708 | 1.4976 | 1845 | 1.7214 | | 1.6567 | 1.9976 | 2460 | 1.6919 | | 1.501 | 2.4951 | 3075 | 1.6984 | | 1.5237 | 2.9951 | 3690 | 1.6891 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+rocm6.2 - Datasets 3.0.1 - Tokenizers 0.20.1 ### Training Infra Compute sponsored by []HotAisle](https://huggingface.co/hotaisle) on an 8 x MI300X node. See the [WandB Run Logs](https://wandb.ai/augmxnt/mistral-nemo-webnovels) for additional details.